京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着科技的创新和发展,数据分析师也越来越吃香,各行各业都需要这种技能分析数据又能实现业务增长的人才,前很多小伙伴也正在转行中。但是,想成为数据分析师需要学习的知识有很多,大家必须建立一个清晰的知识体系,判断出哪些知识是重点,这些知识需要首先学习,并且不断优化提高。
1.基础知识
数据分析师在数学知识的基础上,引入了统计学,其基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。对于初级数据分析师,学习描述统计相关的内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习算法等更多知识,对于算法相关的工作,则要对高数进行深入学习。
2.业务能力
数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。
脱离业务的纯数据分析没有任何意义,没行业背景的技术如空中楼阁,想成为优秀的数据分析师或培养自己的数据分析思维, 首先要对业务了如指掌,熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是王道。
既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。
Excel运用最广,是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。
另外,具备一个专业统计分析技能更好,SPSS作为入门是极好滴。不过随着数据的增长,编程语言的学习,如Python等将会使数据处理变得更高效。当然,只要和数据打交道,我们就会接触到数据库,所以要学SQL(数据库),掌握基本的增、删、改、查等技能。
最后,可以学写主流的利器,如Python或R,有些行业可能会用到SAS或其他工具,请依据自己的行业选择。
4.沟通能力
数据分析会涉及到很多和业务部门、技术部门的沟通,做出报告后也需要进行展示,并说服别人接受自己的结果。因此,协调沟通能力对于数据分析者而言,也是非常重要的素质之一。
5.学习力
无论是数据分析,还是其他岗位,都需要有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。以上就是CDA数据分析师小编今天跟大家分享的,想要成为数据分析师需要重点学习的一些技能,希望对大家有所帮助。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23