
作者:Boris Scholl, Trent Swanson, Peter Jausovec
来源:大数据DT(ID:hzdashuju)
内容摘编自《云原生:运用容器、函数计算和数据构建下一代应用》
导读:数据库通常用来存储结构化数据,这些数据有明确定义的格式。在过去的几年中,已经发布了许多数据库,可供我们选择的数据库每年都在增长。这些数据库中有许多是为特定类型的数据模型和工作任务设计的。其中一些支持多种模型,通常被归类为多模型数据库。
了解数据库的各种分类有助于你在设计应用时选择正确的数据库。
01 键值数据库
通常,只需要使用主键甚至是部分键来检索应用程序的数据。键/值数据库可以被看作一个非常大的哈希表,该表在唯一的键下存储了一些值。存储的值可以通过键或者部分键高效地检索到。因为该值对于数据库是不透明的,所以如果需要按值来查找一条记录的话就需要逐条扫描。
键/值数据库中的键可以包含多个元素,甚至可以排序以提高查询效率。一些键/值数据库允许使用键的前缀进行查找,从而可以使用复合键。如果数据可以通过一些简单的键嵌套查询,那键/值数据库会是个不错的选择。
例如,我们将客户xyz的订单存储在键/值数据库中,可以使用客户ID作为键的前缀,结合订单号组成键“xyz-1001”来存储订单。可以使用整个键来检索特定的订单,也可以使用“xyz”前缀检索客户xyz的所有订单。
说明:键/值数据库通常是比较便宜的,且具有高度可伸缩性的数据存储。键/值数据库能够根据键对数据进行分区甚至重分区。使用键/值数据库时,选择键很重要,因为这将对数据存储的规模和读写性能产生重大影响。
02 文档数据库
文档数据库和键/值数据库类似,因为它也通过主键存储文档(值)。与键/值数据库不同的是,文档数据库中的文档需要符合某些定义好的结构,而键/值数据库几乎可以存储任意值。这使得文档数据库可以启用诸如维护二级索引的功能以及基于文档查询数据的功能。
通常存储在文档数据库中的值是哈希图(JSON对象)和列表(JSON数组)的组合。JSON格式在文档数据库中很常用,尽管许多数据库引擎使用了更高效的内部存储格式,例如MongoDB的BSON。
建议:当你从关系型数据库转换到基于文档的数据库时,你需要思考如何去组织数据。许多人需要时间来过渡到这种不同的数据建模方法。
传统关系型数据库(如PostgreSQL)存储的数据大部分也可以存储在文档数据库中。它们正变得越来越流行,与关系数据库不同,这些存储的文档可以很好地映射成编程语言中的对象,并且不需要对象关系映射(ORM)工具。
这些数据库通常不强制要求定义数据模式(schema),这对于在软件持续交付(CD)过程中需要更新数据模式的情形具有一些优势。
说明:不强制要求定义模式的数据库通常被称为“读时模式(schema on read)”,因为尽管数据库未强制要求模式,但是在使用数据的应用中存在固有的模式,并且需要知道如何转化读到的数据。
03 关系型数据库
关系型数据库将数据组织到称为表的二维结构中,该结构由列和行组成。一张表中的数据可以与另一表中的数据有关联,数据库系统可以保证这种关联。关系型数据库通常强制执行严格的模式,也称为“写时模式(schema on write)”,在该模式中,向数据库写入的数据必须符合数据库中定义的结构。
关系型数据库已经存在很长时间了,许多开发人员都有使用它们的经验。迄今为止,最流行和最常用的数据库仍然是关系型数据库。这些数据库非常成熟,可以处理包含大量关系的数据,并且拥有大量知道如何使用它们的工具和应用程序生态系统。
在文档数据库中可能很难使用多对多关系,但是在关系型数据库中这非常简单。如果应用的数据具有很多关系,尤其是有事务处理的需求,那么这些数据库可能很合适。
04 图数据库
图数据库存储两种类型的信息:边和节点。边定义了节点之间的关系,你可以把节点看作实体。节点和边都具有属性,其中存储了该节点或边的一些信息。边通常会定义关系的方向或性质。
图数据库可以很好地分析实体之间的关系。图数据也可以存储在任何其他数据库中,但是当图的遍历变得越来越复杂时,其他类型的存储可能很难满足图数据对性能和伸缩性的需求。
05 列族数据库
列族数据库(column family database)将数据组织成行和列,乍一看可能与关系型数据库非常相似。你可以将列族数据库视为行和列组成的表格数据,但是列被分了组,称为列族。
每个列族包含了一组逻辑上相关的列,通常被作为一个单元进行检索或操作。能被单独访问的数据可以存储在单独的列族中。在一个列族中,可以动态添加新列,并且行可以是稀疏的(也就是说,行不需要在每个列下面都有值)。
06 时序数据库
时序数据库是针对时间进行优化的数据库,可根据时间来存储值。这些数据库通常需要支持大量的写操作。它们通常被用于从大量数据源实时收集大量数据。这些数据很少更新,删除操作通常是批量进行的。写入时序数据库的记录通常很小,但记录的量很多。
时序数据库非常适合存储遥测数据。流行的用途包括物联网(IoT)传感器或应用程序/系统的计数器。时序数据库通常会提供数据保持、下采样以及根据数据使用模式的配置将数据保存到其他存储中的功能。
07 搜索引擎
搜索引擎数据库通常用于搜索保存在其他存储和服务中的数据。搜索引擎数据库可以对大量的数据建立索引,并提供近实时的索引查询。
除了搜索像网页这样的非结构化的数据,许多应用程序还使用它为其他数据库中的数据提供结构化和即时搜索功能。有一些数据库也能提供全文索引功能,但是搜索数据库还具备通过词干和泛化将单词缩减为词根的功能。
关于作者:鲍里斯·肖勒(Boris Scholl)是Azure计算团队的产品架构师,专注于下一代分布式系统平台和应用程序模型的研究,拥有多项有关云计算与分布式系统的专利。
特伦特·斯旺森(Trent Swanson)是专注于云和边缘技术的软件架构师。他帮助了不少微软的大客户把应用迁移上云,或在云中构建应用。
彼得·加索维奇(Peter Jausovec)是一名软件工程师,在软件开发和技术领域有10多年的经验。近年来,他一直致力于开发分布式系统上的云原生解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认证 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01