【导语】:今天我们来聊聊粽子,Python分析部分请看第三部分。
又到一年端午节,作为中华民族的传统节日,传说粽子是为祭奠投江的屈原而传承下来的,如今吃粽子也成了端午的主要习俗之一。除了商场出售的琳琅满目的粽子,各家各户的妈妈和奶奶们也纷纷浸糯米、洗粽叶、包粽子。
粽子的包法和形状也很有讲究,除了常见的三角粽、四角粽,还长粽、塔型粽和牛角粽等等。
说到粽子的口味就更多了。粽子几乎每年都会引发咸甜之争,有句话说的是——吃货不分南北,口味必分甜咸。
北方人吃粽子偏爱甜口,多以红枣、豆沙做馅,少数也采用果脯为馅,蘸白糖或红糖食用;
而南方青睐咸口,口味有咸肉粽、咸蛋黄粽、板栗肉粽、腊肉香肠粽、火腿粽、虾仁粽等等。
那么哪家的粽子买得最好?大家都普遍喜欢什么口味?今天我们就用数据来盘一盘端午的粽子。
本文要点:
粽子甜咸之争,自己包粽子选什么料?
吃货的力量,全网粽子谁家卖的最好?
01粽子“甜咸之争”
自己包粽子选什么料?
自己家包的粽子,永远是最好吃的,相比起来外面卖的粽子都不香了。对厨艺有自信的小伙伴们大可以自己试着包包看。
那么自己包粽子,选甜口还是咸口?馅料配红豆还是五花肉?
首先我们获取了,美食天下网站关于粽子的菜谱,共460条。看看哪些菜谱最受欢迎吧。
1甜粽还是咸粽?
在甜咸之争中,这次甜粽胜出了。
有33.04%的菜谱都是甜粽,其次22.17%才是咸粽。同时也有许多小伙伴选择最简单的纯糯米粽,原味,这部分占比17.83%。
2食材选什么
食材方面我们看到:
无论如何糯米和粽叶都是必不可少的。
然后在咸粽方面,五花肉很多人的首选,其次咸蛋黄、香菇、排骨、腊肠等都是常见的选择;在甜粽方面呢,红豆蜜枣是很多人的首选。其次绿豆、豆沙、花生米、西米等也不错。
3调料放什么
调料方面可以看到:
糖和酱油是少不了的。还花生油、蚝油等选择。除了这些常规操作,也还有选择抹茶粉这种创新的做法。
02吃货的力量
全网粽子谁家卖的最好?
出于自己不会包粽子、图方便、过节送人等考虑,直接在网上买粽子的人也不少。那么哪些店铺的粽子最受大众欢迎呢?我们分析获取了淘宝售卖粽子商品数据,共4403条。
粽子店铺销量TOP10
1首先在店铺方面:
五芳斋是妥妥的霸主,粽子销量位居第一。其次真真老老位居第二。
2粽子店铺地区排行TOP10
这些店铺都来自哪里?谁是真正的粽子大省呢?
经过分析发现,浙江一骑绝尘,粽子店铺数量远远领先其他省份。浙江的粽子店铺占到全网的67.71%。毫无争议的大佬。
其次广东、上海、北京分部位于第二、三、四名。
3 粽子都卖多少钱?
粽子都卖多少钱也是消费者们最关系的了,淘宝店铺买的粽子一般一份有10个左右。分析发现,价格在一份50元以内的还是占到绝多数,全网有55.22%的粽子都在50元内。其次是50-100元的,占比24.81%。
4不同价格粽子销量
那么销售额方面又如何呢,什么价格的粽子卖的最好?
可以看到50-100元的粽子销售额最高,占比53.61%。其次是50元以内的,占比22.06%。毕竟从送礼品的角度,还是要一定价格考量的,太平价的不行,需要一定的档次。
5粽子标题词云
最后,我们再看到粽子的商品标题:
整理发现,除了"粽子"、"端午"等关键词,"嘉兴"被提到的最多。看来嘉兴的粽子是真的很有名呀。
粽子馅料方面,"蛋黄"、"鲜肉"、"豆沙"都是非常热门的。同时"礼盒包装"、"送礼"、"五芳斋"等也被多次提到。
03用Python教你
爬取淘宝粽子数据
我们使用Python获取了淘宝网粽子商品销售数据和美食天下菜谱数据,进行了一下数据分析。此处展示淘宝商品分析部分代码。按照数据读入-数据处理和数据可视化流程,首先导入我们使用的Python库,其中pandas用于数据处理,jieba用于分词,pyecharts用于可视化。
# 导入包 import pandas as pd import time import jieba from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False
1数据导入
# 读入数据
df_tb = pd.read_excel('../data/淘宝商城粽子数据6.23.xlsx')
df_tb.head()
查看一下数据集大小,可以看到一共有4403条数据。
df_tb.info()
RangeIndex: 4403 entries, 0 to 4402
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 goods_name 4403 non-null object
1 shop_name 4403 non-null object
2 price 4403 non-null float64
3 purchase_num 4403 non-null object
4 location 4403 non-null object
dtypes: float64(1), object(4)
memory usage: 172.1+ KB
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共4192条。
去除重复值
goods_name:暂不处理
shop_name:暂不处理
price:暂不处理
purchase_num:提取人数,注意单位万的处理
计算销售额 = price * purchase_num
location:提取省份
# 去除重复值 df_tb.drop_duplicates(inplace=True) # 删除购买人数为空的记录 df_tb = df_tb[df_tb['purchase_num'].str.contains('人付款')] # 重置索引 df_tb = df_tb.reset_index(drop=True) # 提取数值 df_tb['num'] = df_tb['purchase_num'].str.extract('(\d+)').astype('int') # 提取单位 df_tb['unit'] = df_tb.purchase_num.str.extract(r'(万)') df_tb['unit'] = df_tb.unit.replace('万', 10000).replace(np.nan, 1) # 重新计算销量 df_tb['true_purchase'] = df_tb['num'] * df_tb['unit'] # 删除列 df_tb = df_tb.drop(['purchase_num', 'num', 'unit'], axis=1) # 计算销售额 df_tb['sales_volume'] = df_tb['price'] * df_tb['true_purchase'] # 提取省份 df_tb['province'] = df_tb['location'].str.split(' ').str[0] df_tb.head()
数据可视化部分主要对以下的数据进行汇总分析,分析维度如下:
粽子店铺商品销量排行
各省份粽子店铺数量排行
各省份粽子销量分布
粽子都卖多少钱?
不同价格区间的销售额分布?
粽子的食材
商品标题词云图
粽子店铺商品销量排行Top10
shop_top10 = df_tb.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10) # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(shop_top10.index.tolist()) bar1.add_yaxis('', shop_top10.values.tolist()) bar1.set_global_opts(title_opts=opts.TitleOpts(title='粽子店铺商品销量排行Top10'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)), visualmap_opts=opts.VisualMapOpts(max_=1350657.0) ) bar1.render()
各省份粽子店铺数量排行Top10
province_top10 = df_tb.province.value_counts()[:10] # 条形图 bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar2.add_xaxis(province_top10.index.tolist()) bar2.add_yaxis('', province_top10.values.tolist()) bar2.set_global_opts(title_opts=opts.TitleOpts(title='各省份粽子店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1000) ) bar2.render()
浙江vs其他省份店铺粽子销量对比
names = ['浙江', '其他省份'] numbers = [3378601.0. 1611409.0] data_pair = [list(z) for z in zip(names, numbers)] # 绘制饼图 pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie1.add('', data_pair, radius=['35%', '60%']) pie1.set_global_opts(title_opts=opts.TitleOpts(title='浙江vs其他省份店铺粽子销量对比'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie1.set_colors(['#EF9050', '#3B7BA9']) pie1.render()
全国店铺粽子销量分布
province_num = df_tb.groupby('province')['true_purchase'].sum().sort_values(ascending=False) # 地图 map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px')) map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())], maptype='china' ) map1.set_global_opts(title_opts=opts.TitleOpts(title='全国店铺粽子销量分布'), visualmap_opts=opts.VisualMapOpts(max_=300000), ) map1.render()
粽子都卖多少钱?
# 分箱 bins = [0.50.100.150.200.500.1000.9999] labels = ['0-50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-9999元'] df_tb['price_cut'] = pd.cut(df_tb.price, bins=bins, labels=labels, include_lowest=True) price_num = df_tb['price_cut'].value_counts() # 数据对 data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())] # 绘制饼图 pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie2.add('', data_pair2. radius=['35%', '60%'], rosetype='radius') pie2.set_global_opts(title_opts=opts.TitleOpts(title='粽子都卖多少钱?'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF']) pie2.render()
不同价格区间的销售额
# 添加列 cut_purchase = round(df_tb.groupby('price_cut')['sales_volume'].sum()) # 数据对 data_pair = [list(z) for z in zip(cut_purchase.index.tolist(), cut_purchase.values.tolist())] # 绘制饼图 pie3 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie3.add('', data_pair, radius=['35%', '60%']) pie3.set_global_opts(title_opts=opts.TitleOpts(title='不同价格区间的销售额表现'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie3.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie3.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA']) pie3.render()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26