
之前的文章中我们已经将master节点的网络IP、hostname文件、hosts文件配置完成,接下来还有hadoop相关配置文件需要修改。今天我们来讲master节点hadoop的配置。
1、hdfs-site.xml
在hadoop的配置文件中与HDFS(hadoop分布式文件系统)相关的是hdfs-core.xml文件。在伪分布集群中只有一个节点,因此此节点即要有NameNode功能也要有DataNode功能。在工作环境中这两个是不会在一个节点上的,在我们的多节点分布式集群中master只运行NameNode因此需在hdfs-site.xml文件中删除DataNode相关配置。
打开虚拟机在终端中输入cd hadoop/etc/hadoop 命令进入hadoop配置文件目录。
终端输入命令vim hdfs-site.xml进入vim编辑界面,按下图步骤删除原来伪分布集群配置的DataNode相关配置,并将数据冗余数量设置为2。
输入i进入编辑模式,编辑后的文件内容如下所示。
最后退出编辑模式,保存并退出。
2、core-site.xml
在core-site.xml中指定一个节点运行hdfs服务。在之前伪分布集群中只有一个节点,因此我们使用的是localhost,如今在集群中有三个节点,我们约定使用master。
在终端中输入vim core-site.xml按下图操作修改配置文件。
修改后内容如下所示
记得退出并保存。
在yarn-site.xml里可以修改与资源管理模块YARN相关的一些配置。
终端中输入 vim yarn-site.xml进行以下更改,将资源调度管理任务放置于master节点上
最终修改后的文件内容如下图所示。
4、mapred-site.xml
进行以下更改,主要添加mapreduce运行历史记录监控端口和网页端口。
同样,在终端输入vim mapred-site.xml开始编辑配置文件,配置内容如下所示
最后保存并退出。
5、slaves
slaves文件指明哪些节点运行DateNode进程,这里我们的集群中运行DataNode进程的节点有slave1、slave2。因此需将这两节点保存到slaves文件中。
在终端中输入 vim slaves命令编辑文件,编辑后的文件内容如下图所示。
最后保存slaves文件并退出编辑。到这里master节点上的hadoop相关配置已经完成了。
接下来我们要通过克隆master及slave1虚拟机来扩展集群。
6、生成slave1节点
通过克隆master 生成slave1节点的过程与之前克隆伪分布节点的操作是一致的这里不再赘述,唯一区别是在执行到下图步骤时注意将虚拟机名称设置为slave1并选择正确的存储位置方便管理。还有一点,被克隆的虚拟机一定要关机状态才可以被克隆。
slave1节点与master节点在hostname、IP地址、Hadoop配置这几个方面是有些差异的,在复制好slave1节点之后需进行配置。
6.1 配置IP地址
在前面文章中提到过slave1节点IP地址应设置为固定的值:192.168.79.12。详细的配置方法步骤已经在配置master节点时介绍过,配置slave1节点时可以参考一下。修改完成后的配置结果如下图所示,点击save保存即可。
6.2、修改hostname
保存并退出
6.3、修改Hadoop配置项
hdfs-site.xml
保存并退出之后重启slave1节点查看配置是否生效。
7、生成slave2节点
Slave2与slave1在Hadoop相关配置内容上是一致的,因此通过克隆slave1节点来生成slave2可以减少一些操作步骤。
克隆slave1节点时的操作步骤同样参考之前文章内容,区别是执行到下图步骤时记得更改虚拟机名称为slave2并更改存储目录(存储目录自己定义)。
7.1、配置IP地址
克隆完成后打开slave2虚拟机并配置其IP地址。配置过程与之前配置master节点IP过程一致,只是IP地址需改为192.168.79.13结果如下图所示,点击save保存即可。
更改Hostname,在终端中输入sudo vim /etc/hostname并回车执行,根据提示输入密码
输入i编辑hostname文件,文件内容如下所示为slave2,然后保存退出。
重启虚拟机测试配置是否生效,重启命令为sudo reboot
slave2重新启动后打开终端,输入命令ifconfig查看IP设置及虚拟机名,如下图所示配置已经生效。
到这里我们的hadoop集群安装配置完成。接下来的文章我会给大家介绍一下hadoop集群如如何启动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15