
大数据时代的全面铺展,大数据应用的全面展开,数据分析师、数据挖掘师、数据科学家、首席数据分析师等专业性极高的岗位的刚性需求越来越大,数据分析师的待遇也只会越来越好,数据分析师的发展前景也只会越来越光明。这大数据应用这一块的未来发展趋势大好的情况下,我们要做的是什么?当然是不断提高自己的数据分析方面的专业知识和职业素养,让自己的数据分析岗位或数据分析职称更上一层楼,我们的工作待遇自然也会蹭蹭往上涨,我们的生活质量自然也会变得更好。大数据应用的当下,大数据在市场中发挥的价值真的是越来越巨大,大到可能连我们自己都不敢相信。对于未来,大数据发挥的市场价值走向会是怎么的呢?下面就来详细跟大家讲讲数据在未来的市场价值到底有多大。
今天,成功的互联网公司,电子商务公司,无论是全球的还是中国的,都是利用数据,也就是利用大数据成功进行商业创新的先锋,他们是走在最前面的,是先成功的一批,但是更大的机会在于其它各行各业的企业,所有其它各行各业的企业都可以成为数据驱动的企业,都可以利用大数据促进我们自己企业的成功。
无处不在的“大数据”
据介绍,对于“大数据概念”,同方股份早在2005年就涉及相关业务,当时虽然还是是数据类应用,非名为“大数据”,但确与数据相关。周侠说:“我们已经定义了人与数据的概念,这是一种积累的关系。将大数据作为产业去发展,在未来的社会,数据将在很大程度上、更多角度影响到我们的生活环境,未来的市场是巨大的。”
周侠认为,大数据中的“大”指的是数据量级大,结构多元化复杂;“数”是无规则、无认知、历史、实时的;“据”是对数字的采集加工和分析,形成依据,找出论据体现它的价值。
“大数据”可以说是无处不在。在虚拟互联网中,发一张照片、上传一个文件、进行一次搜索等操作都可以看做一个数据;而在现实生活中,打电话、去医院挂号、去超市购买物品等行为也都是数据。将这样庞大而看似无序的数据进行分层,然后进行一系列复杂的分析,找出其“相关性”,从而可以客观反映出事物的现状。
比如:当下有许多超市可以注册会员,所有会员所购买的物品都会被电脑记录下来,如果将每个会员所购买的物品进行分析,就会得出每个会员购物习惯,进而分析出会员的喜好以及近期所急需的物品。一些超市会根据每个会员的喜好进行精准营销,从而获得更大的利润。
同方股份总经理兼总工程师李小华表示,同方股份的目标不是仅仅为了做一个数据资源体系,而是希望能够利用数据资源体系,帮助ZF解决其信息和数据支撑不足的情况。
体现“大数据”价值三步走
周侠认为,实现“大数据”价值首先要注重数据的共识性、全局性和相关性等特点。首先,在数据搜集方面,同方股份除了通过物联网技术、传感器得到实时数据外,还将购买第三方的数据。其中重点是与一些跟数据有联系的ZF部门和机构展开合作,比如统计局、经信委等,以此保证数据的共识性。
第二步,同方股份将数据之间建立相关性,进而建立一套标准体系。周侠认为,单纯的数据并没有价值,必须有一套理念来、一套机制对数据进行处理、对接,然后得出可以描述全局的“数据”,进而形成对于机构的检测评价体系。
第三步,找出工作现状与工作目标之间的“偏差”,这种“偏差”可以单独拿出来,再进行一次数据处理,从而在目标上去调整这种偏差。这个就使机构的发展更加健康和准确,通过这些环节把“大数据”的价值体现出来。
基于此,同方股份已推出“基于元数据的统计核心业务系统”,该产品通过建设统计业务和政务管理相结合的数据处理软件集成平台,实现从规划设计、数据采集、处理、存储、分析、发布的统计业务全过程的电子化,并支持统计局与ZF相关部门间的数据交换和资源共享。
周侠说,在生活、工作中,每个人做出的一次决策,其实都是对数据加工分析过程,只不过没有理论体系支撑而已。而通过技术方法论来把这种过程科学化、理论化、合理化,将会形成真正的决策。也许这种决策也会有一些偏差,但比那种“拍脑门”的决策肯定进步了很多。因此,“大数据”不仅可用于商业用途,还可以帮助ZF进行决策,甚至在智慧城市建设中必不可少,在未来将会蓬勃发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08