
CDA数据分析师认证考试在每年的6月与12月最后一个周末进行,一年两次。从2020年考季考试,CDA 数据分析师认证考试改为随报随考,考试城市遍布70多个,250+考场,考试时间及地点更加自由灵活。第八届(2018年6月)CDA考试现已结束,本次考试在全国21所考试中心顺利进行,共完成LEVEL 1业务数据分析师,LEVEL 2建模分析师,LEVEL 2大数据分析师三门科目。经过简要数据统计分析,CDA发布本次考试的通过率及考生数据报告。
CDA第八届通过率:
解读:本届考试通过率及成绩情况:
LEVEL 1通过率为64%(其中成绩A占比9%,成绩B占比24%,成绩C占比31%)。
LEVEL 2建模分析师通过率为51%(其中成绩A占比11%,成绩B占比14%,成绩C占比26%)
LEVEL 2大数据分析师通过率为49%(其中成绩A占比9%,成绩B占比17%,成绩C占比23%)。
较上一届(第七届)比较,LEVEL 1的通过率有所下降,LEVEL 2的通过率微上升。随着CDA认证的普及,考试内容的不断迭代和更新,越来越多的企业抢夺数据人才,作为行业人才选拔的参照标准,未来CDA考试的难度会有所加大,通过率趋势也会逐步下降。
CDA第八届考生地区分布:
CDA第八届考生专业分布:
CDA第八届考生工作年限情况:
解读:本次考试,考生具有工作经验的占比74%,无工作经验的占比26%。其中3年以上工作经验的考生占比最多,达到42%;工作2-3年的占比10%,1年以下工作经验的占比最少,为8%。此数据说明CDA认证更深入到具有多年工作经验的职场人士之中,工作经验越多的职场人士越需求CDA证书,其次是无工作的人士以此作为行业的敲门砖。
CDA第八届考生岗位分布:
解读: 此数据为综合了本届考试所有考生的岗位信息,进行了数据的整理和分类,删除了空缺值,得出了考生从业岗位的占比情况。可见数据分析岗位占比最多,从业的考生中超过了1/3的考生皆从事数据分析类岗位;管理类岗位其次,占比16%;工程师、程序员IT相关岗位随后,占比15%。之后为运营、产品、市场、销售等。基本证明了对于大多数还在数据类岗位的从业人员都急需一个专业能力的提升和认可,获得CDA证书也将是在自己现有职位往更高职位或平台的一个跳板。在IT岗的一些工程师欲获得CDA证书,转行从事数据岗位。而在管理、运营、产品、市场等岗位,也有一定的数据分析技能需求。
CDA第八届考生TOP 企业:
解读:以上是删选了考生来自的所有企业单位,列出的TOP企业名单,包括外企、国企、私企、政府部门等。可看出这些500强企业,政府部门的员工也需要CDA技能,参与CDA认证考试,获得证书。也说明CDA持证人遍布在这些企业单位,接触着最前沿的数据技术。
综上:随着大数据和数据分析的普及,企业对数据人才的需求越来越理性,越来越明确,人才的竞争变得愈加激烈。以往来看,只要带点数据分析相关的技能或背景的人就可以称作数据分析师,且容易得到offer,但实际工作并不理想。因此企业期望能够得到一个鉴别人才的参照标准,为自己更好的筛选人才。对于求职者来讲,现在社会对人才的定义更偏“T型”和“十字型”,社会对数据分析师的理解更深,要求更高,因此想要成为抢手的人才,更应该具备全面、系统的技能。于是越来越多专业的学生,在高校无法满足学得数据分析的情况下,获取CDA技能,选择从事数据相关职业;越来越多的职场人士在以往没有经过系统、专业训练的情况下,重新学习,考取CDA证书,甚至是世界500强企业的人士也渴望获得一个专业证书,为自己镀金。
因此,无论是企业还是人才,都期望有一个专业的参照标准,连接互通。CDA发展至今,也一直担任着企业和人才互相选择的桥梁角色,降低了交易成本,提高了沟通效率。同时CDA也提供着相应的系统培训、公开课,举办着俱乐部沙龙、行业峰会等活动,为社会培养并输送了更多的专业人才,推动着整个数据行业的良好发展。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08