京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师认证考试在每年的6月与12月最后一个周末进行,一年两次。从2020年考季考试,CDA 数据分析师认证考试改为随报随考,考试城市遍布70多个,250+考场,考试时间及地点更加自由灵活。第八届(2018年6月)CDA考试现已结束,本次考试在全国21所考试中心顺利进行,共完成LEVEL 1业务数据分析师,LEVEL 2建模分析师,LEVEL 2大数据分析师三门科目。经过简要数据统计分析,CDA发布本次考试的通过率及考生数据报告。
CDA第八届通过率:
解读:本届考试通过率及成绩情况:
LEVEL 1通过率为64%(其中成绩A占比9%,成绩B占比24%,成绩C占比31%)。
LEVEL 2建模分析师通过率为51%(其中成绩A占比11%,成绩B占比14%,成绩C占比26%)
LEVEL 2大数据分析师通过率为49%(其中成绩A占比9%,成绩B占比17%,成绩C占比23%)。
较上一届(第七届)比较,LEVEL 1的通过率有所下降,LEVEL 2的通过率微上升。随着CDA认证的普及,考试内容的不断迭代和更新,越来越多的企业抢夺数据人才,作为行业人才选拔的参照标准,未来CDA考试的难度会有所加大,通过率趋势也会逐步下降。
CDA第八届考生地区分布:
CDA第八届考生专业分布:
CDA第八届考生工作年限情况:

解读:本次考试,考生具有工作经验的占比74%,无工作经验的占比26%。其中3年以上工作经验的考生占比最多,达到42%;工作2-3年的占比10%,1年以下工作经验的占比最少,为8%。此数据说明CDA认证更深入到具有多年工作经验的职场人士之中,工作经验越多的职场人士越需求CDA证书,其次是无工作的人士以此作为行业的敲门砖。
CDA第八届考生岗位分布:

解读: 此数据为综合了本届考试所有考生的岗位信息,进行了数据的整理和分类,删除了空缺值,得出了考生从业岗位的占比情况。可见数据分析岗位占比最多,从业的考生中超过了1/3的考生皆从事数据分析类岗位;管理类岗位其次,占比16%;工程师、程序员IT相关岗位随后,占比15%。之后为运营、产品、市场、销售等。基本证明了对于大多数还在数据类岗位的从业人员都急需一个专业能力的提升和认可,获得CDA证书也将是在自己现有职位往更高职位或平台的一个跳板。在IT岗的一些工程师欲获得CDA证书,转行从事数据岗位。而在管理、运营、产品、市场等岗位,也有一定的数据分析技能需求。
CDA第八届考生TOP 企业:

解读:以上是删选了考生来自的所有企业单位,列出的TOP企业名单,包括外企、国企、私企、政府部门等。可看出这些500强企业,政府部门的员工也需要CDA技能,参与CDA认证考试,获得证书。也说明CDA持证人遍布在这些企业单位,接触着最前沿的数据技术。
综上:随着大数据和数据分析的普及,企业对数据人才的需求越来越理性,越来越明确,人才的竞争变得愈加激烈。以往来看,只要带点数据分析相关的技能或背景的人就可以称作数据分析师,且容易得到offer,但实际工作并不理想。因此企业期望能够得到一个鉴别人才的参照标准,为自己更好的筛选人才。对于求职者来讲,现在社会对人才的定义更偏“T型”和“十字型”,社会对数据分析师的理解更深,要求更高,因此想要成为抢手的人才,更应该具备全面、系统的技能。于是越来越多专业的学生,在高校无法满足学得数据分析的情况下,获取CDA技能,选择从事数据相关职业;越来越多的职场人士在以往没有经过系统、专业训练的情况下,重新学习,考取CDA证书,甚至是世界500强企业的人士也渴望获得一个专业证书,为自己镀金。
因此,无论是企业还是人才,都期望有一个专业的参照标准,连接互通。CDA发展至今,也一直担任着企业和人才互相选择的桥梁角色,降低了交易成本,提高了沟通效率。同时CDA也提供着相应的系统培训、公开课,举办着俱乐部沙龙、行业峰会等活动,为社会培养并输送了更多的专业人才,推动着整个数据行业的良好发展。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26