
毫无疑问,各行各业因为大幅爆发的数据而正变得蒸蒸日上。在这10年中,几乎所有行业都或多或少的受到这一巨变的影响。科技渗透到各个领域,并且已经成为每个处理单元的必要元素。谈到IT行业,具体来说,软件和自动化是最基本的术语,并且用于处理循环的每个阶段。
相较于稳定性而言,企业更关心的是敏捷性和创新性,通过大数据技术,可以帮助公司及时实现这一愿望。大数据分析不仅使企业能够跟随瞬息万变的潮流而不断更新,而且还具有预测未来发展趋势的能力,使企业占据有竞争力的优势。
让我们找到行业广泛采用大数据的原因究竟:
大数据是企业核心竞争力,也是公司的软实力
大数据席卷了全球,并带来了惊人的利益,这一力量无需多说。大数据使IBM、亚马逊等全球顶尖公司受益,这些公司通过利用大数据开发一些前沿的技术,为客户提供高端服务。
“采用大数据,云计算和移动战略的企业发展状况超过没有采用这些技术的同行53%。”——《福布斯》
在戴尔开展的一项调查中显示,采用大数据、云计算以及移动战略的企业中,优势更加明显,也就是,这些企业中有53%采用大数据起步较晚或者尚未采用,在这一结果令人惊讶不已。
虽然大数据尚处于初级阶段,但通过在处理过程中,融合这一理念,将为企业赢得50%的利润。显然,在如今的商业中,大数据显现的惊人优势并不亚于石油或煤炭带来的利益。
掌握数据能力,开采“暗数据”
全球著名的咨询公司Gartner公司对暗数据的定义是“组织在正常业务活动过程中收集、处理和存储的信息资产,通常不能用于其他目的”。
然而,大数据系统的出现使得这些公司能够将尚未开拓的数据投入使用,并从中提取有意义的信息。过去没有被认可或认为毫无用处的数据突然成为公司的财富,这一点令人惊讶不已。通过大数据分析,这些公司可以加快流程,从而降低运营成本。
软件正在吞噬整个世界 数据争夺战正在打响
我们目前处于数据驱动型经济中,如果无法分析当前或未来的趋势,任何组织都无法生存下去。抢夺数据已经成为决定下一步行动方案的关键。
客户逐渐成为所有组织的焦点,对于及时满足客户的需求这一任务非常迫切。只有在强大的软件支持下,业务战略才有可能会支撑和加速业务运营。这最终促成了强大的大数据技术的需求,可以以许多方式使组织受益。
决策指导 更智能更快速更精准
在这个激烈的竞争时代,人人都想脱颖而出。但问题是如何实现这一期望?虽然公司与竞争对手持有相同的运营模式,但公司应当如何展现其独一无二?答案在于公司采用的策略。为了表现优于竞争对手,做出良好和智慧决策的能力在每一步中发挥关键作用。这些决定不仅应该是好的决定,而且应该尽可能做出又快又明智的决定,使公司能够在积极的主动出击。
将大数据分析纳入流程的做法揭示了非结构化数据,从而有助于管理者以系统的方式分析其决策,并在需要时采取替代方法。
以用户为中心 用户行为数据是营销关键
现在客户有机会随时随地购物,在相关信息帮助下,对于公司需要做出比之前更敏捷的反应这一要求而言具有更大的挑战。但是公司将如何不断地实现这一点呢?答案是借助“大数据”。客户动向是不断变化的,因此营销人员的策略也应该做出相应调整。通过整合过去和实时数据来评估客户的品味和喜好,这样可以使公司采取更快捷的应对措施。
例如,亚马逊通过利用强大的大数据引擎的能力,从一个以产品为基础的公司发展成为囊括1.52亿客户在内的大型市场参与者。亚马逊旨在通过跟踪客户的购买趋势,并为营销人员提供他们即时需要的所有相关信息,从而来为客户服务。此外,亚马逊通过实时监控全球15亿种产品,成功满足了客户的需求。
通过数据仓库使数据资产变现
这些公司越来越大,因此不同的流程产生不同的数据。资料仓储中的许多重要信息仍然无法访问。然而,公司已经能够使用大数据分析这一武器来挖掘这座大山,让分析师和工程师深入研究,并提供新颖而又有意义的见解。
经过这番分析,有一件事值得肯定的是,这是一个高度数字化和技术驱动时代的开端,并伴随着强大的实时大数据分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08