京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,互联网时代,电商时代,什么东西越来越重要,不用说都知道是大数据。大数据的分析应用,可以为一个公司、一个企业、一个地区的未来发展规划起到一针见血的作用。随着大数据的火热,关于数据分析师的职业领域也越来越多前仆后继,想在大数据分析领域占得自己的一席之地,可以说,数据分析师前景是非常乐观的,也是发展巨大的。好多人通过努力拼搏终于进入到数据分析领域,从事数据分析领域的工作,但不要以为进入了就可以无忧了。要知道,数据分析领域的薪酬职能差异,决定你在数据分析岗位上的价值大小和对公司的重要程度,你对公司越重要、越有贡献,你在公司的地位和待遇就会越优异而不可轻易更替。除非你不想往上爬,不过这世上有谁会拒绝更好的生活呢?所以啊,在数据分析师前景的道路上,你是选择永远呆着数据分析助理或初级数据分析师领域,还是向上走,走到高级数据分析师、资深数据分析师,甚至是数据科学家、数据分析专家的级别,这一切都看你自己的造化。数据分析领域不同职位薪酬职能差异,下面为你点拨。
数据科学家
与数据最相关的工作头衔大概便是数据科学家。这是一个相对新颖的头衔,但是它正迅速成为最受欢迎的头衔。它甚至被称为”二十一世纪最性感的工作!”
尽管它的名气很响,但是数据科学家的实际作用是最具有争议的一个——可能因为这个角色随着公司的不同而不同。
在所有相关数据中,有一定数量的技能重叠。区分他们最好的办法就是思考一下他们的技能。他们在各种不同的领域是一个通才,但是在一个特定的领域有着深厚的经验。对于一个数据科学家来说,深度体验很可能是在统计和计算机学习中的。
统计和机器学习知识是需要从不同来源获得数据的领域专业知识,创建一个模型,优化其准确性,验证其目的,并确认其意义。至少,数据科学家需要知道如何采用一些数据,显示它,清洁它,过滤它,挖掘它,观察它,然后验证。
除了所有的统计建模,数据科学家还需要知道如何对企业决策者解释他们的发现,了解业务和产品模型,善于解决问题,并且了解一些基本的工程。
最流行的数据科学语言是R和Python语言,不过他们也知道Scala, Java 和 Closure.
“数据科学家是那些好奇的人,盯着数据和趋势。它几乎像一个文艺复兴时期的人,他们真的想把学习和变化带到一个组织。”Anjul Bhambhi,IBM大数据产品副总裁说。
所以,要成为一个数据科学家,你需要在计算机科学,建模,统计,分析和数学上有一个坚实的基础。
他们的作用各不相同,但是总的来说,他们筛选通过所有输入的数据流(包括内部和外部),带着发现新的见解和解决业务问题的目标。然后,他们与组织领导沟通他们的研究结果和建议。
一个数据科学家几乎可以用1000个数据工具来做他们的工作。一切从import.io(数据采集)到Tableau(数据可视化)对RJ Metrics(数据分析)。
工作的技术性(和良好的候选人的短缺),意味着数据科学家们会赚大钱。根据Glassdoor,数据科学家是目前在美国第十五大高薪的工作,平均91,000美元/年和在硅谷110,000美元/年。
数据/业务分析师
像其他的数据科学家一样,数据分析人员在收集、组织和解释统计信息时执行不同的任务。他们主要负责用数据去识别效率,问题区域以及可能的改进。
把它想象为”数据科学”。虽然他们可能没有用数学印章发明新的算法,但是他们有一个很强的如何使用现有的工具来解决问题的认识。他们需要对五个核心竞争力有个基本了解:编程,统计,机器学习,数据修改,数据的可视化。
有人制作图片和报告,以及进行初步研究(如调查)。这部分的工作意味着沟通技巧必不可少的。他们需要把复杂的思想用一种方法让不懂技术的人也能够理解。
业务分析师和数据分析师之间的界限变得如此模糊以至于他们基本上是相同的事情。两者都使用他们的报告和分析去帮助管理者们决策和设定目标。
虽然他们拥有一些技术技能,但是你的传统数据分析师,在技术上是远低于平均数据科学技术。不使用R和Python,他们经营Microsoft Excel, 访问Microsoft, SharePoint和SQL数据库。
因为技能简单,所以会有一个比较低的工资。平均数据分析师的收入约为54,000美元/年。数据分析师来自各种不同的背景,可以包括技术、信息管理、关系数据库的设计和开发、商业智能、数据挖掘或统计等。
数据工程师
从数据分析员的另一边——技术频谱,你会发现数据工程师。
通常来说的软件工程师,数据工程师是数据基础设施的设计者,建设者和管理者。他们负责编制和安装数据库系统,编写复杂的查询,扩展到多台机器,并将灾难恢复系统投入到位。他们还要确保这些系统顺利进行。
数据工程师的核心工作是确保数据流从源到目的地能够顺利进行,并且可以对数据进行处理和分析。这样做,他们需要了解复杂的基于Hadoop的技术(MapReduce,Hive,Pig),SQL技术(PostgreSQL和MySQL),NoSQL技术(卡桑德拉和MongoDB)和数据仓库解决方案。此外,他们还应该熟悉各种编码如Python语言,C/C++,Java,perl,R和更多。
数据工程师可能主要在幕后工作,但是他们是你数据业务生态系统的重要组成部分。因此,他们得到的报酬相当不错,平均每年91,000美元。
收集、储存、分析和展示数据需要一个团队的人。没有任何一个数据工作比其他工作更重要。每个角色都有一个独特的和重要的部分,以确保管理层拥有他们所需要的所有信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11