
数据分析这个技能,到底能不能速成
没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,掌握起来越是这样。
但这并不代表,我们不能以一些更有效的方式,把学习的过程变得高效而有趣。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题,应用在哪些行业,哪些业务场景下。只有这一点想通了,你的数据分析之路的学习才是高效的、有目的的、有意义的。
CDA数据分析师自2013年成立以来,培养了上万名学员跻身数据分析师行列,我们通过对部分学员的需求表进行文本分析,让我们来看看学习数据分析的学员都想学什么?
一、 学习目标分析&学习结果
从关键词和文本摘要提取可以得到学员学习目标主要为:
A. 掌握数据分析&数据挖掘理论、方法和实践;熟练掌握统计分析软件如
SPSS,SAS,SPSS,R 等;—成为优秀的数据分析师;提升职业竞争力;
B. 应用数据分析于学术、商业领域的实践,解决实际问题;
C. 就业考证,升职加薪;
D. 掌握数据分析实战能力,实现转行。
二、学员行业及公司背景
通过上述 word2vec 图和词云图,可以看出CDA 的学员来自于各行各业,数据分析是一个具有广泛应用和发展前景的行业,有的来自于工业,如化工、航天、能源、制造业;有的来自于财经行业,如证券、新闻、新华网、人民日报;有的来自于娱乐及服务行业。
三、应用领域分析&业务具体问题分析
通过关键词词云和摘要提取可以发现大部分学员比较有目标性,学习的需求全部来自于工作中实际的业务需求。业务主题如:银行信用贷款、客服管理分析、用户行为分析、用户习惯分析、客户关系管理理等。
有了这些目标,下面你需要知道要达成这样的目标,它的知识体系是怎么样的。只有明确的目标导向,配合以最体系化的学习内容,学习最有用的那部分知识,才能避免无效信息降低学习效率,找到成为企业雇主喜爱的数据分析师的最快路径。
根据数据挖掘标准流程CRISP-DM,数据挖掘流程是一个多部门协同产生价值的过程。从业务部门的资讯需求到内外部的数据整合与获取,建置数据仓库,数据挖掘,报表呈现。最终形成可实施的报告或者与工程师合作产生数据产品。
因此,我建议你的学习路径如下(以非编程类分析软件为例):
数据分析是一个快速发展的领域,无论你是刚刚起步还是想拓展现有技能,数据分析师要投入的精力都很多,但是我们保证,回报却更高。
如果你是一个自制力很强而且自身学习极有规划性,那么通过上述的大纲和网上资料教材等自学,你可以很快跻身数据分析师这样一个富有魅力和挑战性的行业。
如果你自身的自制力很弱,面临自学知识难以系统升华?自学过程无人指导?遇到瓶颈无法突破?那么,我们为你设计了一套完整学习方案。
CDA数据分析研究院结合市场和学员需求,首推【CDA数据分析师-周末集训班】课程。职场数据分析师完整学习解决方案,三个月周末学习,顶尖师资带领每周案例实战,毕业分组项目竞技。名额有限,欢迎报名参加!
一、课程信息
北京&远程:2017年12月16日~3月18日(3个月周末)
课程费用:现场班9900元,远程班7900元
授课形式:现场(远程)与视频结合,长期学习加练习答疑。
二、 报名流程
1.在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、 课程安排
第一阶段:[线下]Mysql数据库管理
第二阶段:[线上]数据分析之数理统计知识P1
第三阶段:[线上]数据分析之数理统计知识P2
第四阶段:[线下]SPSS数据分析P1
第五阶段:[线下]SPSS数据分析P2
第六阶段:[线下]SPSS案例分析
第七阶段:[线上]Tableau数据可视化
第八阶段:[线上]期中项目作业
第九阶段:[线下]SPSS Modeler数据挖掘P1
第十阶段:[线下]SPSS Modeler数据挖掘P2
第十一阶段:[线下]期末毕业答辩
(详细大纲参照原文链接)
四、课程优惠
4.以上优惠不叠加
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11