
前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例。然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数。
正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式。
一
案例数据
某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目。根据多年的生产经验,你认为影响生产效率的因素主要包括A水解温度,B水解时间,C加盐量,D烘房温度,根据目前现有的生产条件,这几个因素能调整的参数大概只有三个水平,以残留蛋白作为质量指标,你决定通过正交试验来解决当前的问题。
数据来源:《SPSS13在空白列正交试验设计及其数据处理中的应用》
二
选择正交表
各因素只能调整3个水平,主要有4个因素,因此最先考虑到选用L9(34)的四因素三水平正交表,由于参数水平客观条件的限制,L16(45)正交表可以不用考虑了。
选定L9(34)正交表,遇到一个问题:因素排满,没有空白列用于统计实验误差,怎么呢?所以必须通过重复试验来统计实验误差,你决定每个组合方案重复3次。因此,本实验最终需要27次,将得到27组数据。
三
SPSS正交试验数据录入格式
网上有不少同学提到这个问题,其实数据结果组织形式和无重复试验的格式是一样的,只需要顺次增加行即可。
四
方差分析步骤
菜单操作:
分析→一般线性模型→单变量
因变量:输入残留蛋白
固定因子:输入水解温度,水解时间C加盐量,烘房温度
模型选项卡:以上四个影响因素作为主效应进行分析
方差分析结果:
四个影响因素的sig值均小于0.01,表明四个因素对生产胃蛋白酶都有极显著的影响,验证了最初你的经验。但这还不是我们最终的目的,我们需要得到提高生产效率的最优化工艺组合,直白一点,就是你必须找到每个影响因素最好的那个水平参数。
这个问题在上一篇文章中就有说明,可采用多重比较的方法就行可视化比较。
五
具体做法
多重比较选项卡:将四个具有显著影响的因素依次输入到右侧的“两两比较检验”框中,选择“duncan”法来计算。
单从数据分析的结果来看,最优工艺组合为:A3B3C2D1。值得讨论的问题:水解时间、加盐量两个因素趋势图有些异常,可能和其他两个因素存在交互作用,留给大家讨论。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10