
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“我手里有好几个产品,该怎么分配资源?要不要继续投钱?”
“这条赛道还值不值得做?是机会,还是坑?”
这是很多创业者、产品经理,甚至做自媒体的人都会思考的问题。而波士顿矩阵(BCG矩阵),就是一张简单却非常有效的决策工具,让你用最直观的方式判断哪些业务值得继续押注,哪些该及时放弃。
如果你从没听说过这个工具,别担心,我会用最接地气的方式带你搞懂它,并告诉你如何用它来判断你的业务方向。
波士顿矩阵是波士顿咨询公司在1970年代提出的,核心思想是:所有业务(或产品)都可以按照“市场增长率”和“市场份额”两个维度进行分类。
来看这张图:
简单来说,这四种业务的策略完全不同:
光看理论不够,我们来看看现实中这些业务的“命运”是怎么变化的。
明星业务,就是市场在疯涨,你还抢到了头部位置,这样的机会谁都想要。
2007年,乔布斯站在发布会上,手里拿着第一代 iPhone,说出那句经典台词:“今天,苹果要重新定义手机!”
当时,整个智能手机市场正处于起飞阶段,诺基亚、黑莓是当时的霸主,但 iPhone 带来了完全不同的触屏交互体验,很快就冲到了市场的最前排。
在这种情况下,苹果当然要砸钱!
这就是典型的明星业务思维:在风口上,必须砸钱巩固市场份额,否则别人会超车。
业务分析是所有数据分析工作的基础,不懂业务根本没法进行数据分析,也无从判断数据是否异常。
类似的例子还有:
策略:
现金牛业务就是那些已经成熟、市场份额稳定的业务。它们可能没什么增长空间,但每年都能贡献一大笔利润。
最典型的案例是微软的 Windows。
想象一下,你是微软的 CEO,手上有一个全球 PC 端市场份额 90% 的 Windows 系统,你会怎么做?
Windows 早就不是明星业务,但它仍然是微软最赚钱的“现金牛”之一,每年都能贡献几十亿美元的收入。
类似的案例还有:
策略:
问题产品业务,处于市场在疯涨,但你的市场份额很小的尴尬状态。
还记得Facebook(Meta)砸钱搞元宇宙吗?
当扎克伯格宣布 All in 元宇宙时,这个市场的确在增长,但问题是:
结果,元宇宙业务被逐步收缩,Meta 开始重新把重心放回 AI 和社交平台。
这就是一个典型的“问题产品”业务:它可能有潜力,但如果竞争力不够,砸钱进去就是个无底洞。
策略:
瘦狗业务,就是那种市场不增长,你的市场份额也不大的业务,继续做下去只会消耗资源。
最典型的例子就是诺基亚的功能机。
当年,诺基亚曾是全球手机市场的霸主,但 iPhone 和安卓智能机崛起后,整个功能机市场萎缩,诺基亚的市场份额也被一步步蚕食。
他们犹豫了很久,直到2011年才决定转向 Windows Phone,结果这个决策不仅没救活诺基亚,反而让它彻底错过了安卓智能机时代。
瘦狗业务的教训就是:有些业务,拖着不放反而更糟,早点砍掉,资源可以用在更有前景的地方。
类似的案例还有:
策略:
如果你看完这篇文章,还只是记住了“明星、现金牛、问题产品、瘦狗”四个概念,那它的价值其实并没有真正发挥出来。
因为波士顿矩阵真正的价值,不是帮你分类,而是让你做出更聪明的资源分配决策。它不是一个静态工具,而是一个动态调整的思维框架。它不是让你机械地塞进四个象限,而是帮你看到市场趋势和资源最优解。
它不仅适用于企业战略,也适用于个人职业规划、投资分析、内容创作等领域。
所以,在实践中用好波士顿矩阵,我有以下几个压箱底的建议:
一个业务今天是明星,不代表明天不会跌成瘦狗;一个问题产品,如果市场增长得够快,可能迅速变成明星。
关键是盯紧市场趋势,及时调整策略,而不是死守当前的分类。
很多人热衷追风口,觉得“明星业务”才是未来,但现实是: 真正稳固的企业,都有强大的现金牛业务支撑。用它产生的利润,去投资下一个增长点,才是最稳健的打法。
问题产品是最纠结的业务,不是砸钱就能变成明星,关键是找准撬动市场的杠杆点。先做小规模试验,找到用户痛点,再决定是否加大投入。
瘦狗业务的最大风险是消耗你的时间、资金和注意力。很多企业就是因为迟迟不愿放手,让瘦狗业务拖垮了整体增长。
及时止损,避免沉没成本陷阱,把资源投向更有潜力的方向。
市场不会等你,今天的明星,明天可能就成了现金牛,甚至被淘汰。 真正聪明的企业/个人,会在明星业务变成熟之前,提前孵化下一个明星。这样才能保持长期增长,而不是被市场抛下。
如果你要用一句话记住这篇文章,那就是:
“不断调整,不恋战,重视现金流,提前布局未来。”
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26