
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
“我手里有好几个产品,该怎么分配资源?要不要继续投钱?”
“这条赛道还值不值得做?是机会,还是坑?”
这是很多创业者、产品经理,甚至做自媒体的人都会思考的问题。而波士顿矩阵(BCG矩阵),就是一张简单却非常有效的决策工具,让你用最直观的方式判断哪些业务值得继续押注,哪些该及时放弃。
如果你从没听说过这个工具,别担心,我会用最接地气的方式带你搞懂它,并告诉你如何用它来判断你的业务方向。
波士顿矩阵是波士顿咨询公司在1970年代提出的,核心思想是:所有业务(或产品)都可以按照“市场增长率”和“市场份额”两个维度进行分类。
来看这张图:
简单来说,这四种业务的策略完全不同:
光看理论不够,我们来看看现实中这些业务的“命运”是怎么变化的。
明星业务,就是市场在疯涨,你还抢到了头部位置,这样的机会谁都想要。
2007年,乔布斯站在发布会上,手里拿着第一代 iPhone,说出那句经典台词:“今天,苹果要重新定义手机!”
当时,整个智能手机市场正处于起飞阶段,诺基亚、黑莓是当时的霸主,但 iPhone 带来了完全不同的触屏交互体验,很快就冲到了市场的最前排。
在这种情况下,苹果当然要砸钱!
这就是典型的明星业务思维:在风口上,必须砸钱巩固市场份额,否则别人会超车。
业务分析是所有数据分析工作的基础,不懂业务根本没法进行数据分析,也无从判断数据是否异常。
类似的例子还有:
策略:
现金牛业务就是那些已经成熟、市场份额稳定的业务。它们可能没什么增长空间,但每年都能贡献一大笔利润。
最典型的案例是微软的 Windows。
想象一下,你是微软的 CEO,手上有一个全球 PC 端市场份额 90% 的 Windows 系统,你会怎么做?
Windows 早就不是明星业务,但它仍然是微软最赚钱的“现金牛”之一,每年都能贡献几十亿美元的收入。
类似的案例还有:
策略:
问题产品业务,处于市场在疯涨,但你的市场份额很小的尴尬状态。
还记得Facebook(Meta)砸钱搞元宇宙吗?
当扎克伯格宣布 All in 元宇宙时,这个市场的确在增长,但问题是:
结果,元宇宙业务被逐步收缩,Meta 开始重新把重心放回 AI 和社交平台。
这就是一个典型的“问题产品”业务:它可能有潜力,但如果竞争力不够,砸钱进去就是个无底洞。
策略:
瘦狗业务,就是那种市场不增长,你的市场份额也不大的业务,继续做下去只会消耗资源。
最典型的例子就是诺基亚的功能机。
当年,诺基亚曾是全球手机市场的霸主,但 iPhone 和安卓智能机崛起后,整个功能机市场萎缩,诺基亚的市场份额也被一步步蚕食。
他们犹豫了很久,直到2011年才决定转向 Windows Phone,结果这个决策不仅没救活诺基亚,反而让它彻底错过了安卓智能机时代。
瘦狗业务的教训就是:有些业务,拖着不放反而更糟,早点砍掉,资源可以用在更有前景的地方。
类似的案例还有:
策略:
如果你看完这篇文章,还只是记住了“明星、现金牛、问题产品、瘦狗”四个概念,那它的价值其实并没有真正发挥出来。
因为波士顿矩阵真正的价值,不是帮你分类,而是让你做出更聪明的资源分配决策。它不是一个静态工具,而是一个动态调整的思维框架。它不是让你机械地塞进四个象限,而是帮你看到市场趋势和资源最优解。
它不仅适用于企业战略,也适用于个人职业规划、投资分析、内容创作等领域。
所以,在实践中用好波士顿矩阵,我有以下几个压箱底的建议:
一个业务今天是明星,不代表明天不会跌成瘦狗;一个问题产品,如果市场增长得够快,可能迅速变成明星。
关键是盯紧市场趋势,及时调整策略,而不是死守当前的分类。
很多人热衷追风口,觉得“明星业务”才是未来,但现实是: 真正稳固的企业,都有强大的现金牛业务支撑。用它产生的利润,去投资下一个增长点,才是最稳健的打法。
问题产品是最纠结的业务,不是砸钱就能变成明星,关键是找准撬动市场的杠杆点。先做小规模试验,找到用户痛点,再决定是否加大投入。
瘦狗业务的最大风险是消耗你的时间、资金和注意力。很多企业就是因为迟迟不愿放手,让瘦狗业务拖垮了整体增长。
及时止损,避免沉没成本陷阱,把资源投向更有潜力的方向。
市场不会等你,今天的明星,明天可能就成了现金牛,甚至被淘汰。 真正聪明的企业/个人,会在明星业务变成熟之前,提前孵化下一个明星。这样才能保持长期增长,而不是被市场抛下。
如果你要用一句话记住这篇文章,那就是:
“不断调整,不恋战,重视现金流,提前布局未来。”
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09