京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
https://edu.cda.cn/goods/show/3844?targetId=6753&preview=0
要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”。

比如突然的涨,突如其来的跌。数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果数据有涨或者跌我们都需要去查出原因的。

相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。
在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!
针对异常数据的处理,通常有五个步骤:
就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。评估这个变化,可以问“异常的范围是什么?”“此时的变化是否属于异常?”

发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行周同比、月同比或者是年同比。如果确实可以定义为自然增值,那么就没有太大的必要深究,如果定义为异常,那么就可以去挖掘导致变化的原因了。
用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。
这个步骤主要是考虑商业宣传和产品运营上的影响,是否有相关的操作可能导致该指标的变化?下面举3个例子:
(1)例如促销力度加大了,可能导致下单用户量猛增,但是销售额却没有多大变化;
(2)例如在快手上投放广告,没有在抖音上进行投放,所以产品里的北方人占比明显增加;
(3)例如在B站进行运营初见成效,导致产品中弹幕使用量、AWSL、我可以等网络用语激增;

找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。
最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。
举个栗子:你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?

发现问题:在对数据进行统计汇总时发现某一天的异常数据。
确定问题:数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?

由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。
确定原因:那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。

那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。

那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?

通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。
针对性解决问题:联系相关负责人制定及时有效的解决方案。
执行:落实和监测解决方案的执行效果。
以上五个步骤看起来简单,但它是基于对业务洞察的基础之上的,需要根据以往的经验,才能做出这些判断。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。
业务分析是所有数据分析工作的基础,不懂业务根本没法进行数据分析,也无从判断数据是否异常。
通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。
以上的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20