
以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
帕累托分析(Pareto Analysis)源于经济学家维尔弗雷多·帕累托提出的"二八法则",其核心原理是通过识别导致80%结果的20%关键因素,帮助决策者聚焦资源解决主要矛盾。
具体实施步骤包含:
在管理和质量控制领域,帕累托分析(Pareto Analysis)是一种决策工具,用于识别少数重要因素对总体影响的程度。除此之外还可以有如下应用:
使用前需安装,代码运行的pyecharts版本是2.0.5
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==2.0.5
首先,我们需要导入Pyecharts中的Bar和Line图表类,以及options类,用于实现对各个图标的配置,此外如果代码需要在jupyter notebook中展示图形还需要从globals中导入CurrentConfig, NotebookType做执行环境的配置,对于新版本的jupyter notebook统一设置为NotebookType.JUPYTER_LAB。
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
# from pyecharts.globals import CurrentConfig, NotebookType
# CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB
# 定义原始数据
categories = ["产品质量问题", "送货延迟", "客户服务不满", "价格不公", "其他"]
counts = [40, 30, 20, 5, 5]
技术细节说明:
total_counts = sum(counts) # 计算总量
cumulative_percents = [sum(counts[:i+1])/total_counts for i in range(len(counts))] # 累进计算
计算过程解析:
(1) 柱状图初始化
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
bar.render_notebook()
关键技术点:
(2) 折线图构建
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
line.render_notebook()
视觉优化设计:
帕累托图需将以上两张图组合在一起,可以使用overlap实现
bar.overlap(line) # 图层叠加
bar.render_notebook()
可以看到图形很奇怪,因为折线图对应的数据与柱形图对应的数据量纲相差很大。那如何优化?
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
bar.render_notebook()
深度优化说明:
# bar.load_javascript() # 最新版jupyter notebook需要这样
bar.render_notebook() # Jupyter内嵌展示
# bar.render("pareto.html") # 生成独立HTML文件
多环境支持:
大家如果觉得自己的可视化技能训练的不错了,可以实操起来。
本实现方案通过Pyecharts高效构建了交互式帕累托分析图表,将技术实现与业务分析有机结合,为决策者提供直观的数据支持。开发者可根据具体业务需求扩展功能模块,构建完整的决策分析系统。绘制帕累托的流程相对固定,因此这些代码也可以封装为函数方便后续的复用。
# 完整实现代码
def get_plt(categories,counts):
import pandas as pd
df = pd.DataFrame({"categories":categories,"counts":counts})
categories = list(df.sort_values("counts")["categories"])
counts = list(df.sort_values("counts")["counts"])
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
bar = (
Bar()
.add_xaxis(categories)
.add_yaxis("投诉次数", counts, yaxis_index=0) # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
# 优化点1 添加副y轴
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="累计百分比",
min_=0.3,
max_=1.1,
interval=0.2
)
)
.set_global_opts(
title_opts=opts.TitleOpts(title="帕累托分析图"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross")
)
)
line = (
Line()
.add_xaxis(categories)
.add_yaxis(
"累计百分比",
cumulative_percents,
yaxis_index=1, # 设置使用哪个y轴左边的是第一个0 右边的是第二个1
linestyle_opts=opts.LineStyleOpts(color="red", width=4),
label_opts=opts.LabelOpts(is_show=True, color="red")
)
)
bar.overlap(line)
# 调整图层渲染顺序不然折线图被柱形图遮挡
bar.options["series"][1]["z"] = 1 # 折线图层
bar.options["series"][0]["z"] = 0 # 柱状图层
return bar
以上的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23