京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“我们的利润率上升了,但销售额却没变,这是为什么?”
“某个业务的市场份额在下滑,到底是什么原因?”
“公司整体业绩稳定,但某些部门的表现差异巨大,哪些因素影响了它们?”
......
以上是企业经营过程中经常会遇到的问题,如何才能找到这些问题的答案,使用构成分析拆解数据可能会有奇效。
接下来,通过一个业务案例,带大家理解什么是构成分析以及如何使用它分析业务问题。
有一家食品经销商,主要销售休闲零食、饮料和主食。最近,财务部门发给经营者一份报告,显示过去三个月的销售额保持在 300 万元不变,但利润率却从 20% 上升到 25%。
这个数据让人不禁疑惑:销售额没变,利润率为什么会提升? 是因为商品售价提高了,还是因为更高利润的品类卖得更多了?
经营者把这个问题抛给了数据分析师,数据分析师尝试用构成分析方法找出利润率上升的原因。
构成分析是通过分析整体中各部分所占的比例,了解各部分对整体的贡献程度。

构成分析的核心是:拆解整体数据,看清内部结构的变化。它关注的是各组成部分的占比,以及这些占比如何随时间或外部条件变化。

构成分析的关键不在于单看“总数”的变化,而是深入拆解各部分的贡献,从而发现真正的业务动因。
构成分析是CDA数据分析师一级的知识点,业务分析是CDA数据分析一级考核的重点,因为数据分析工作岗位就要基于业务分析,如果是销售或者业务负责的小伙伴,可以去重点学习。

所处位置:第二章数据分析方法 >第二节由基础分析范式引申出的六种分析方法 >第三小节 构成分析方法
第一步:获取关键数据
为了搞清楚利润率变化的真正原因,数据分析师整理了过去三个月各品类的销售额:

先不看利润率,而是关注销售额的构成变化,会发现:
· 休闲零食的销售占比从 33.3% 上升到 46.7%
· 主食的销售占比从 50% 降到 33.3%
· 饮料的占比略有提升
也就是说,虽然总销售额没变,但利润率较高的休闲零食销售占比上升,利润率较低的主食占比下降,这可能是利润率提高的关键因素。
第二步:数据可视化,直观呈现变化
为了更直观地理解销售构成的变化,使用百分比堆叠柱状图来展示各品类的占比变化。

从图表可以清晰看到:
· 休闲零食占比不断上升,表明其销售额在整体收入中的比重越来越大。
· 主食占比下降,说明低利润率的产品销售占比减少。
· 饮料略有上升,但整体影响较小。
这个分析结果说明,利润率提升主要是因为高利润的品类占比增加了,拉高了整体利润率。这为食品经销商提供了一个重要的业务洞察:未来应该继续加强高利润品类的推广,而不是单纯追求总销售额的增长。
由此可见,构成分析可以帮助企业:
1. 精准拆解业务问题
识别业绩变化的真正驱动因素,而不是停留在表面的数据增长或下降。
2. 优化产品或用户结构
发现高价值产品或用户的比例变化,并调整营销策略。
3. 支持长期战略决策
帮助企业识别哪些业务或产品线值得重点投入。
构成分析是一个极其实用的分析方法,它不仅仅是简单的比例计算,而是一种深层次的数据解读手段。通过对数据的结构变化进行分析,可以找到影响业务增长或下滑的真正原因,避免单纯依赖总量指标做出错误决策。
如果您也想做数据分析类的工作,可以透过CDA专业的数据分析能力测试,真正做到心理有数。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28