
“我们的利润率上升了,但销售额却没变,这是为什么?”
“某个业务的市场份额在下滑,到底是什么原因?”
“公司整体业绩稳定,但某些部门的表现差异巨大,哪些因素影响了它们?”
......
以上是企业经营过程中经常会遇到的问题,如何才能找到这些问题的答案,使用构成分析拆解数据可能会有奇效。
接下来,通过一个业务案例,带大家理解什么是构成分析以及如何使用它分析业务问题。
有一家食品经销商,主要销售休闲零食、饮料和主食。最近,财务部门发给经营者一份报告,显示过去三个月的销售额保持在 300 万元不变,但利润率却从 20% 上升到 25%。
这个数据让人不禁疑惑:销售额没变,利润率为什么会提升? 是因为商品售价提高了,还是因为更高利润的品类卖得更多了?
经营者把这个问题抛给了数据分析师,数据分析师尝试用构成分析方法找出利润率上升的原因。
构成分析是通过分析整体中各部分所占的比例,了解各部分对整体的贡献程度。
构成分析的核心是:拆解整体数据,看清内部结构的变化。它关注的是各组成部分的占比,以及这些占比如何随时间或外部条件变化。
构成分析的关键不在于单看“总数”的变化,而是深入拆解各部分的贡献,从而发现真正的业务动因。
构成分析是CDA数据分析师一级的知识点,业务分析是CDA数据分析一级考核的重点,因为数据分析工作岗位就要基于业务分析,如果是销售或者业务负责的小伙伴,可以去重点学习。
所处位置:第二章数据分析方法 >第二节由基础分析范式引申出的六种分析方法 >第三小节 构成分析方法
第一步:获取关键数据
为了搞清楚利润率变化的真正原因,数据分析师整理了过去三个月各品类的销售额:
先不看利润率,而是关注销售额的构成变化,会发现:
· 休闲零食的销售占比从 33.3% 上升到 46.7%
· 主食的销售占比从 50% 降到 33.3%
· 饮料的占比略有提升
也就是说,虽然总销售额没变,但利润率较高的休闲零食销售占比上升,利润率较低的主食占比下降,这可能是利润率提高的关键因素。
第二步:数据可视化,直观呈现变化
为了更直观地理解销售构成的变化,使用百分比堆叠柱状图来展示各品类的占比变化。
从图表可以清晰看到:
· 休闲零食占比不断上升,表明其销售额在整体收入中的比重越来越大。
· 主食占比下降,说明低利润率的产品销售占比减少。
· 饮料略有上升,但整体影响较小。
这个分析结果说明,利润率提升主要是因为高利润的品类占比增加了,拉高了整体利润率。这为食品经销商提供了一个重要的业务洞察:未来应该继续加强高利润品类的推广,而不是单纯追求总销售额的增长。
由此可见,构成分析可以帮助企业:
1. 精准拆解业务问题
识别业绩变化的真正驱动因素,而不是停留在表面的数据增长或下降。
2. 优化产品或用户结构
发现高价值产品或用户的比例变化,并调整营销策略。
3. 支持长期战略决策
帮助企业识别哪些业务或产品线值得重点投入。
构成分析是一个极其实用的分析方法,它不仅仅是简单的比例计算,而是一种深层次的数据解读手段。通过对数据的结构变化进行分析,可以找到影响业务增长或下滑的真正原因,避免单纯依赖总量指标做出错误决策。
如果您也想做数据分析类的工作,可以透过CDA专业的数据分析能力测试,真正做到心理有数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10