
为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让学习在有序的节奏中稳步推进。按既定时间节奏打卡,能帮助我们养成规律的学习习惯,克服拖延与惰性;能构建起系统的学习框架,避免学习的盲目与无序;更能营造出积极的学习氛围,激励自己不断前行。以组队学习的形式,与志同道合的伙伴们携手共进,团队的力量将激发你的学习动力,让学习不再是孤独的旅程。大家相互监督、彼此鼓励,共同提升学习效果,一起精进自己在数据分析专业领域的技能。
报名截止:02月13日(星期四)
开营仪式:02月13日(星期四)晚
打卡开始:02月13日(星期四)
首次打卡:02月18日(星期二)
结营仪式:03月17日(星期二)
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索 ~
本期设置了两个专题方向,大家可以依据个人时间和学习计划灵活选择。考虑到专题内容的深度与学习强度,若非自学能力极为突出,不建议同时学习两个专题,以免精力分散,影响学习效果。
《CDA1级教材:精益业务数据分析》:https://edu.cda.cn/goods/show/3151?targetId=6734&preview=0
《Python数据分析极简入门》:https://edu.cda.cn/goods/show/3429?targetId=6735&preview=0
领队:秋语
辅助:阿涛、牧童、tukey、紫色纱、小糖
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键的 “纲” 与 “本”。它严格按照考试大纲编写,既适合 CDA LEVEL I 考生备考,也适合业务及数据分析岗位的从业者提升自我。
这本教材能全面、系统地讲解业务数据分析全流程技能,帮你理解数据分析背后的逻辑。它有以下显著特点:
**系统性:**教材从基础知识讲起,逐步过渡到技能提升,最后落脚于实践应用,各个部分联系紧密,形成了完整的学习体系。就像盖房子,从打地基、搭框架到装修,每个步骤都清晰明确,让你能循序渐进地学习。
**实用性:**它不只是讲理论,还很注重理论与实践结合。书中有大量实际案例分析和实操练习,能让你在实际操作中更好地理解和运用知识,真正掌握数据分析的方法,而不只是纸上谈兵。
**前沿性:**在科技快速发展的今天,数据分析领域也在不断变化。CDA1 级教材紧跟时代,介绍了最新的数据分析工具、技术和方法。学习这本教材,能让你跟上行业发展,提升自己在职场上的竞争力。
全书由八大部分构成:绪论、表格结构数据与表结构数据、数据库应用、描述性统计分析、多维数据透视分析、业务分析方法、业务分析报告与数据可视化报表、CDA 职业发展。
为了帮助大家学好这本教材,我们举办了本次打卡活动。基于教材内容开展学习,旨在建立读书交流群。大家可以按照规划好的7周时间进行打卡学习,在群里交流心得、讨论问题,和伙伴们一起进步。
本期计划报名300人,主要面向:
零基础就业转行、应届毕业生,想入门数据分析行业;
未从事数据分析相关工作,想先了解下CDA考试内容;
在备考CDA证书时缺乏时间规划与交流氛围的学员;
数据分析岗位从业人员想精进下自己的理论知识与技能;
产品、运营、营销等业务岗与研发、技术岗在职者想系统学习下;
¥1.7 (PS:1.7 寓意 一起打卡、一起交流、一起进步 )收费不是目的,完成所有打卡后费用可全部返还!
报名入口:https://edu.cda.cn/goods/show/3151?targetId=6734&preview=0
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索~
近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度学习等从业者的首选语言。
“工欲善其事,必先利其器。” 要做好数据分析,离不开一个好的编程工具,不论是从Python的语法之简洁、开发之高效,招聘岗位之热门来说,Python都是数据科学从业者需要掌握的一门语言。
但一直以来,人们却误以为“学会Python”是件很难的事情。
实则不然,这恰恰是我们选择学Python的理由之一。
《Python数据分析极简入门》定位于做数据分析所需Python知识的极简入门,所以只留核心中的核心,即Python基础、Pandas数据分析,确保数据分析的基础知识一网打尽的同时,减轻大家学习的压力!
本期计划报名300人,主要面向:
① 打开过若干次书本被劝退的初学者,希望快速入门Python数据分析;
② 网盘一堆课,却因没有学习氛围而放弃的学生和专业人士;
③ Python内容多不知道哪些是重点无处下手;
④ 跟着程序员的方式去学了Python,然而自己想学的是数据分析;
¥1.7 (PS:1.7 寓意 一起打卡、一起交流、一起进步 )收费不是目的,完成所有打卡后费用可全部返还!
报名入口:https://edu.cda.cn/goods/show/3429?targetId=6735&preview=0
重要的事情说三遍,本期所有打卡交流群,不承诺答疑!不承诺答疑!不承诺答疑! 只有群友互帮互助,互帮互助,信息共享!全靠大家用爱发电,如果你的问题没有得到解答,请多渠道上下而求索~
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12