
用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情感体验。
通俗来讲,用户旅程图是一个发现用户痛点并解决痛点的工具。它鼓励以用户的视角来展示用户的整个行为旅程,从用户的触发点开始,经过各种交互和体验,直到达到目标或完成任务。
通过过绘制用户旅程图,可以帮助到产品团队更好地了解用户的需求和体验,找到改进和优化产品的机会,以提供更好的用户体验和满足用户的期望,从而为企业创造更多的商业价值。
在进入正题前,我们首先要认识到:数据本身并不能传达客户在体验产品中所经历的挫折或惊喜。因此我们首先要思考两个问题:
是什么促使了产品用户的需求?
是什么让用户犹豫使用这个产品?
分析了以上两个问题后才能更好地理解用户体验。要想更加简单清晰地阐述上述两个问题,这个时候就可以通过用户旅程分析来进行展示说明。
如上图,用户旅程除了可以遍历整个用户体验的过程,还可以用它来遍历任何问题的发生过程「Before, During, After」,以便找到解决方案或者优化问题。
示例场景:
招聘过程:在招聘某人之前,之中和之后会发生什么?
获得产品客户:获取客户之前,之中和之后会发生什么?
市场营销:客户购买之前,期间或之后发生什么?
简而言之,用户旅程能够使你更快地定位解决问题,同时便于使团队达成共识。其背后的逻辑是,每个人都在脑海中经历过这个过程,人们会在心智上建立自己的问题地图,并逐步解决它们。
用户旅程的主要工作就是列出所有事情,并将其映射到每个人都可以使用的结构中。
用户旅程图是将一个人完成某个目标而经历的所有过程和行为,作为一种可视化工具直接、清晰地描述了人机交互时的体验。
其优势包括:
宏观地查看用户体验时的心路历程。
直观地呈现出用户的痛点,以便分析产品/服务在各环节中的优劣。
深度了解用户行为,协助用户分类。
从图中调整信息架构,进一步更新产品以优化用户体验。
通过创建可视化地图,项目团队可以更加清晰地进行用户旅程分析,有效地推动后续业务协作。
用户旅程图的适用性非常地广泛,可以应用在各行各业,无论是产品、服务、应用程序还是其他领域,都可以通过用户旅程图来更好理解用户体验过程、帮助我们发现问题和改进机会。
比如宜家或超市的人流动线设计,车站和机场的出入口标识牌设计、软件产品使用体验、硬件产品的使用体验等等,都可以使用用户旅程图来进行分析。
用户旅程地图通常包含6个组成要素:用户角色,阶段,行为目标,触点,情感,需求和痛点。
用户角色:指用户在使用产品或服务时扮演的角色,如潜在用户,新用户,忠实用户,竞对用户等。
阶段:指用户旅程中以时间或事件而划分出的不同阶段,例如意识阶段,考察阶段,浏览阶段,对比阶段,购买阶段和使用阶段等。
行为目标:指用户在每个阶段中的目标和期望,例如搜索信息,对比产品,购买产品或获得支持等。
触点:指用户与产品或服务进行互动的各种渠道和方式,例如渠道:网站,应用程序,社交媒体,热线电话,电子邮件等;方式:电脑,手机等。
情感:用户在每个阶段的情感表现,包括满足,困惑,兴奋,失望等。
需求和痛点:用户在每个阶段所面临的需求,期望和障碍。
一般而言,一种典型用户画像对应一个或者多个用户旅程图,因为往往每种用户使用软件的目的和行为都不一样,每种都会有一个用户旅程。但是某些特殊情况,如行为链路上,行为模式相似,就可归为一起。
用户旅程图绘制主要分为五大步骤:
确定客户画像是一切工作的前提,客户旅程地图是基于客户画像,并对客户与产品或服务互动的全过程进行展示。可以通过客户访谈、市场观察、模拟环境、客户日记等方式对客户进行定性,但是需要注意的是,我们的客户喜好是多变的,不同时间、不同客户角色的需求和痛点也会存在差异,对应的客户画像也要与时俱进。
通过客户画像,企业可以了解目标客户的需求、偏好与痛点,从而了解客户的购买目标。要了解购买目标还可以通过汇总客户测试反馈、使用客户分析工具等等方式。
触点是指客户与产品交互的关键点,客户在购买产品前、中、后与品牌接触的任何一点都值得被注意,包括网站访问、社交媒体互动、客户电话等等。站在客户视角复现客户旅程可以帮你更好地识别触点。
客户旅程需要包含客户动作的各个关键阶段,例如了解阶段、考虑阶段、购买阶段、使用阶段、售后阶段等。每个阶段的数据都需要被完整收集,包括搜集客户在每一个操作时的想法、见解与情绪,你可以将想法和情绪曲线相结合,方便你更快速的辨别各个阶段痛点。
客户在持续地变化和发展,客户旅程地图绘制好后需要定期完善和更新,自己或邀请客户过一遍来进行验证可以发现更多的问题。除此以外,每当产品或服务有重大改动时,客户旅程地图也需相应调整。
用户旅程图中的图例可以分为:流向型图例、分割型图例、图标型图例、线型图等4种类型。
流向型主要是指用户旅程的流转示意,用户与产品的互动关系等。通常是用箭头表示,指明了行动的流向,上下游之间的关系。
分割型图例指的是将画面划分为不同区域的线段或形状。用户旅程图在横向层面,有用户不同操作环节的划分,可以用泳道图来示意;在纵向层面,有业务、接触点、用户、产品服务、后台、支持系统等层次的划分,通过实线段来示意。
用户旅程图中的图标型图例,主要包含用户体验三个层级的icon,分别代表了:
用户体验好
体验一般/感受弱
体验欠佳/较差
在颜色上也有一定的区分度,用绿色代表好,橙色代表一般,红色代表不好;再配合情绪曲线的绘制,可以很清晰地看到用户痛点和产品的待优化点。
用户旅程图中的线型图例,特指情绪曲线,用一条连续的折线段表示出来,可以看到用户在整个行为流程中的情绪变化。
总的来说,无论哪种客户旅程地图都应该从客户的角度出发,更深入地了解客户需求,最终提供更优质的客户体验。
在当今这个被数据洪流席卷的时代,数据已成为企业运营与决策的核心驱动力。当前,数据分析已成为衡量职业竞争力的重要标尺。它不再是数据分析师的专属技能,而是每一位职场人士都应掌握的通用语言,是提升工作效率、优化决策质量、推动业务增长的关键所在。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26