
用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情感体验。
通俗来讲,用户旅程图是一个发现用户痛点并解决痛点的工具。它鼓励以用户的视角来展示用户的整个行为旅程,从用户的触发点开始,经过各种交互和体验,直到达到目标或完成任务。
通过过绘制用户旅程图,可以帮助到产品团队更好地了解用户的需求和体验,找到改进和优化产品的机会,以提供更好的用户体验和满足用户的期望,从而为企业创造更多的商业价值。
在进入正题前,我们首先要认识到:数据本身并不能传达客户在体验产品中所经历的挫折或惊喜。因此我们首先要思考两个问题:
是什么促使了产品用户的需求?
是什么让用户犹豫使用这个产品?
分析了以上两个问题后才能更好地理解用户体验。要想更加简单清晰地阐述上述两个问题,这个时候就可以通过用户旅程分析来进行展示说明。
如上图,用户旅程除了可以遍历整个用户体验的过程,还可以用它来遍历任何问题的发生过程「Before, During, After」,以便找到解决方案或者优化问题。
示例场景:
招聘过程:在招聘某人之前,之中和之后会发生什么?
获得产品客户:获取客户之前,之中和之后会发生什么?
市场营销:客户购买之前,期间或之后发生什么?
简而言之,用户旅程能够使你更快地定位解决问题,同时便于使团队达成共识。其背后的逻辑是,每个人都在脑海中经历过这个过程,人们会在心智上建立自己的问题地图,并逐步解决它们。
用户旅程的主要工作就是列出所有事情,并将其映射到每个人都可以使用的结构中。
用户旅程图是将一个人完成某个目标而经历的所有过程和行为,作为一种可视化工具直接、清晰地描述了人机交互时的体验。
其优势包括:
宏观地查看用户体验时的心路历程。
直观地呈现出用户的痛点,以便分析产品/服务在各环节中的优劣。
深度了解用户行为,协助用户分类。
从图中调整信息架构,进一步更新产品以优化用户体验。
通过创建可视化地图,项目团队可以更加清晰地进行用户旅程分析,有效地推动后续业务协作。
用户旅程图的适用性非常地广泛,可以应用在各行各业,无论是产品、服务、应用程序还是其他领域,都可以通过用户旅程图来更好理解用户体验过程、帮助我们发现问题和改进机会。
比如宜家或超市的人流动线设计,车站和机场的出入口标识牌设计、软件产品使用体验、硬件产品的使用体验等等,都可以使用用户旅程图来进行分析。
用户旅程地图通常包含6个组成要素:用户角色,阶段,行为目标,触点,情感,需求和痛点。
用户角色:指用户在使用产品或服务时扮演的角色,如潜在用户,新用户,忠实用户,竞对用户等。
阶段:指用户旅程中以时间或事件而划分出的不同阶段,例如意识阶段,考察阶段,浏览阶段,对比阶段,购买阶段和使用阶段等。
行为目标:指用户在每个阶段中的目标和期望,例如搜索信息,对比产品,购买产品或获得支持等。
触点:指用户与产品或服务进行互动的各种渠道和方式,例如渠道:网站,应用程序,社交媒体,热线电话,电子邮件等;方式:电脑,手机等。
情感:用户在每个阶段的情感表现,包括满足,困惑,兴奋,失望等。
需求和痛点:用户在每个阶段所面临的需求,期望和障碍。
一般而言,一种典型用户画像对应一个或者多个用户旅程图,因为往往每种用户使用软件的目的和行为都不一样,每种都会有一个用户旅程。但是某些特殊情况,如行为链路上,行为模式相似,就可归为一起。
用户旅程图绘制主要分为五大步骤:
确定客户画像是一切工作的前提,客户旅程地图是基于客户画像,并对客户与产品或服务互动的全过程进行展示。可以通过客户访谈、市场观察、模拟环境、客户日记等方式对客户进行定性,但是需要注意的是,我们的客户喜好是多变的,不同时间、不同客户角色的需求和痛点也会存在差异,对应的客户画像也要与时俱进。
通过客户画像,企业可以了解目标客户的需求、偏好与痛点,从而了解客户的购买目标。要了解购买目标还可以通过汇总客户测试反馈、使用客户分析工具等等方式。
触点是指客户与产品交互的关键点,客户在购买产品前、中、后与品牌接触的任何一点都值得被注意,包括网站访问、社交媒体互动、客户电话等等。站在客户视角复现客户旅程可以帮你更好地识别触点。
客户旅程需要包含客户动作的各个关键阶段,例如了解阶段、考虑阶段、购买阶段、使用阶段、售后阶段等。每个阶段的数据都需要被完整收集,包括搜集客户在每一个操作时的想法、见解与情绪,你可以将想法和情绪曲线相结合,方便你更快速的辨别各个阶段痛点。
客户在持续地变化和发展,客户旅程地图绘制好后需要定期完善和更新,自己或邀请客户过一遍来进行验证可以发现更多的问题。除此以外,每当产品或服务有重大改动时,客户旅程地图也需相应调整。
用户旅程图中的图例可以分为:流向型图例、分割型图例、图标型图例、线型图等4种类型。
流向型主要是指用户旅程的流转示意,用户与产品的互动关系等。通常是用箭头表示,指明了行动的流向,上下游之间的关系。
分割型图例指的是将画面划分为不同区域的线段或形状。用户旅程图在横向层面,有用户不同操作环节的划分,可以用泳道图来示意;在纵向层面,有业务、接触点、用户、产品服务、后台、支持系统等层次的划分,通过实线段来示意。
用户旅程图中的图标型图例,主要包含用户体验三个层级的icon,分别代表了:
用户体验好
体验一般/感受弱
体验欠佳/较差
在颜色上也有一定的区分度,用绿色代表好,橙色代表一般,红色代表不好;再配合情绪曲线的绘制,可以很清晰地看到用户痛点和产品的待优化点。
用户旅程图中的线型图例,特指情绪曲线,用一条连续的折线段表示出来,可以看到用户在整个行为流程中的情绪变化。
总的来说,无论哪种客户旅程地图都应该从客户的角度出发,更深入地了解客户需求,最终提供更优质的客户体验。
在当今这个被数据洪流席卷的时代,数据已成为企业运营与决策的核心驱动力。当前,数据分析已成为衡量职业竞争力的重要标尺。它不再是数据分析师的专属技能,而是每一位职场人士都应掌握的通用语言,是提升工作效率、优化决策质量、推动业务增长的关键所在。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10