京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的角色。
优秀的公司,从来不缺HR的简历,但一直都缺优秀HR的简历。近年来,阿里、华为等大厂相继高薪放出了HR的岗位,不过招的不是传统事务性HR,而是人力数据分析师。
阿里人力资源部招聘HR:

华为招聘HR数据分析师:

大厂重金招聘HR数据分析师,给出的月薪也都不低,可见对HR数据分析人才的重视程度,这也从侧面反映出HR数据分析专业人才的稀缺性!
在这人工智能+数字化时代的加持下,世界正发生天翻地覆的改变。人力资源数据分析,不仅仅是对HR个人的要求,更是企业发展的需要。

人力资源数据分析的本质不仅是用数据说话、构建指标和设计仪表盘,而且还是基于业务和HR价值创造的纵向深度价值分析与横向业务驱动分析。
HR们也不再能依靠直觉来做决定了,数据才是向领导提供战略决策的最好证据。而这些明智的决策要依赖于一个关键方面:及时掌握数据分析能力的人力资源管理者。
因此,想进华为、阿里、腾讯这样的公司,HR需要满足同一个条件,那就是具备数据分析的技巧和能力。

在人力资源岗位上,因为本身不具备直接产生效益的能力,如果还不懂得运用人力资源数据推动业务发展的,那对企业而言,只能是成本部门,不被重视,没有任何话语权,还不如外包省钱省力。
正因为如此,很多企业,都已经开始设置人力资源数据分析师岗位。通过大数据获取有关组织和人才的信息,对企业在组织和人才上未来可能产生的问题进行预测、预警、预判,并据此向业务部门提出决策建议,让人力资源真正发挥价值。

如果大家对数据分析行业感兴趣的话,可以下方链接进去探索。
CDA数据分析师认证官网介绍:https://www.cdaglobal.com/pinggu.html
作为以数据分析为核心的HR,必须同时具备以下两个条件:
数据分析应用不仅仅停留在复盘上,更在于规划预测上。企业中CHRO或HR COE的定位便是依托数据的人才洞察与决策。
数据型HR的能力也体现在如何制定基于数据的人力资源规划,如何提升人才分析(People Analytics, PA)能力以及如何最大化人力资本效能上。

数据不是纸上或表格上的数字而已,而是要通过数据分析,找到问题或者规律,分析梳理出背后的关系;
找到原因,再提出解决方案,采取行动,最后反馈评估等,形成管理闭环。

要做好人力资源数据分析,首先要对人力资源数据进行深入了解。具体而言,人力资源数据可以分为三个主要类别:
人力资源信息系统(HRIS)数据:这类数据源自公司的人力资源信息系统,涵盖了绝大多数员工信息。常见的HRIS系统包括Workday、Oracle和SAP等。
其他人力资源数据:有些对数据驱动决策至关重要的HR数据,并不包含在HRIS中。这些数据通常通过调查或其他测量方法获得。
业务数据:虽然很难详尽列出所有相关的业务数据,但它们在人员分析中扮演着日益重要的角色。我们将讨论一些用于人员分析的基本业务数据类型。

HR用数据说话,从来不是一件简单的事情,也是HR工作里含金量高的工作之一。
只是能够做好数据分析的HR专业人才却寥寥无几,大多数HR还是“埋头苦干”的状态,并没有认识到自己手里的数据的价值。

人力资源系统中也会包含着一系列业务数据,如员工、供应商、合作伙伴、原材料、时间、地理位置、业务流程……类别多种多样。
这些数据表面看起来毫无关联,但背后往往隐藏着复杂的关系。如果我们能利用图分析技术,从关系的角度发现它们之间是如何关联、如何影响、如何依赖、如何作用的,我们就能挖掘出一些新的业务解决方案,产生一些全新的价值。
因此,对于HR而言,面对一堆杂乱无章的数据,通常可以考虑从3个角度来进行分析:

事实上,无论是在阿里还是华为,或是其他大厂,有非常多职位都需要数据分析技能。无论你是专职数据分析、还是从事具体的人力资源工作、或者是财务管理、销售运营、到客户服务... ... 这些职能都需要你掌握数据分析技能。
对于职场,尤其是HR而言,如何能获得更多的有关自身的数据,如何能在更多的纬度量化自己,如何能有效的利用这些数据,将成为人和人之间最大的区别所在。

在这个数据驱动的时代,数据分析已经成为了企业决策的核心。它不仅帮助我们从海量数据中提取有价值的信息,还能预测市场趋势,优化业务流程,几乎是每个职场人必修的课程。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。

CDA考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31