京公网安备 11010802034615号
经营许可证编号:京B2-20210330
交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
| Weight | 中 | 轻 | 重 |
|---|---|---|---|
| High | |||
| 中 | 1 | 1 | 1 |
| 低 | 1 | 2 | 1 |
| 高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
| High | Weight | Size | |
|---|---|---|---|
| 0 | 高 | 重 | 大 |
| 1 | 高 | 轻 | 中 |
| 2 | 高 | 中 | 小 |
| 3 | 中 | 中 | 中 |
| 4 | 中 | 轻 | 中 |
| 5 | 中 | 重 | 大 |
| 6 | 低 | 重 | 中 |
| 7 | 低 | 轻 | 小 |
| 8 | 低 | 中 | 小 |
| 9 | 高 | 重 | 大 |
| 10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
| Weight | 中 | 轻 | 重 | |||
|---|---|---|---|---|---|---|
| Size | 中 | 小 | 中 | 小 | 中 | 大 |
| High | ||||||
| 中 | 1 | 0 | 1 | 0 | 0 | 1 |
| 低 | 0 | 1 | 0 | 2 | 1 | 0 |
| 高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
| A1970 | A1980 | B1970 | B1980 | X | id | |
|---|---|---|---|---|---|---|
| 0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
| 1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
| 2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id 列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
| X | A | B | ||
|---|---|---|---|---|
| id | year | |||
| 0 | 1970 | -1.085631 | a | 2.5 |
| 1 | 1970 | 0.997345 | b | 1.2 |
| 2 | 1970 | 0.282978 | c | 0.7 |
| 0 | 1980 | -1.085631 | d | 3.2 |
| 1 | 1980 | 0.997345 | e | 1.3 |
| 2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
| famid | birth | ht1 | ht2 | |
|---|---|---|---|---|
| 0 | 1 | 1 | 2.8 | 3.4 |
| 1 | 1 | 2 | 2.9 | 3.8 |
| 2 | 1 | 3 | 2.2 | 2.9 |
| 3 | 2 | 1 | 2.0 | 3.2 |
| 4 | 2 | 2 | 1.8 | 2.8 |
| 5 | 2 | 3 | 1.9 | 2.4 |
| 6 | 3 | 1 | 2.2 | 3.3 |
| 7 | 3 | 2 | 2.3 | 3.4 |
| 8 | 3 | 3 | 2.1 | 2.9 |
把famid, birth 两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
| ht | |||
|---|---|---|---|
| famid | birth | age | |
| 1 | 1 | 1 | 2.8 |
| 2 | 3.4 | ||
| 2 | 1 | 2.9 | |
| 2 | 3.8 | ||
| 3 | 1 | 2.2 | |
| 2 | 2.9 | ||
| 2 | 1 | 1 | 2.0 |
| 2 | 3.2 | ||
| 2 | 1 | 1.8 | |
| 2 | 2.8 | ||
| 3 | 1 | 1.9 | |
| 2 | 2.4 | ||
| 3 | 1 | 1 | 2.2 |
| 2 | 3.3 | ||
| 2 | 1 | 2.3 | |
| 2 | 3.4 | ||
| 3 | 1 | 2.1 | |
| 2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03