
交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
Weight | 中 | 轻 | 重 |
---|---|---|---|
High | |||
中 | 1 | 1 | 1 |
低 | 1 | 2 | 1 |
高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
High | Weight | Size | |
---|---|---|---|
0 | 高 | 重 | 大 |
1 | 高 | 轻 | 中 |
2 | 高 | 中 | 小 |
3 | 中 | 中 | 中 |
4 | 中 | 轻 | 中 |
5 | 中 | 重 | 大 |
6 | 低 | 重 | 中 |
7 | 低 | 轻 | 小 |
8 | 低 | 中 | 小 |
9 | 高 | 重 | 大 |
10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
Weight | 中 | 轻 | 重 | |||
---|---|---|---|---|---|---|
Size | 中 | 小 | 中 | 小 | 中 | 大 |
High | ||||||
中 | 1 | 0 | 1 | 0 | 0 | 1 |
低 | 0 | 1 | 0 | 2 | 1 | 0 |
高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
A1970 | A1980 | B1970 | B1980 | X | id | |
---|---|---|---|---|---|---|
0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id
列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
X | A | B | ||
---|---|---|---|---|
id | year | |||
0 | 1970 | -1.085631 | a | 2.5 |
1 | 1970 | 0.997345 | b | 1.2 |
2 | 1970 | 0.282978 | c | 0.7 |
0 | 1980 | -1.085631 | d | 3.2 |
1 | 1980 | 0.997345 | e | 1.3 |
2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
famid | birth | ht1 | ht2 | |
---|---|---|---|---|
0 | 1 | 1 | 2.8 | 3.4 |
1 | 1 | 2 | 2.9 | 3.8 |
2 | 1 | 3 | 2.2 | 2.9 |
3 | 2 | 1 | 2.0 | 3.2 |
4 | 2 | 2 | 1.8 | 2.8 |
5 | 2 | 3 | 1.9 | 2.4 |
6 | 3 | 1 | 2.2 | 3.3 |
7 | 3 | 2 | 2.3 | 3.4 |
8 | 3 | 3 | 2.1 | 2.9 |
把famid
, birth
两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
ht | |||
---|---|---|---|
famid | birth | age | |
1 | 1 | 1 | 2.8 |
2 | 3.4 | ||
2 | 1 | 2.9 | |
2 | 3.8 | ||
3 | 1 | 2.2 | |
2 | 2.9 | ||
2 | 1 | 1 | 2.0 |
2 | 3.2 | ||
2 | 1 | 1.8 | |
2 | 2.8 | ||
3 | 1 | 1.9 | |
2 | 2.4 | ||
3 | 1 | 1 | 2.2 |
2 | 3.3 | ||
2 | 1 | 2.3 | |
2 | 3.4 | ||
3 | 1 | 2.1 | |
2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10