京公网安备 11010802034615号
经营许可证编号:京B2-20210330
启用HDFS文件系统之前,需要对其进行格式化;格式化只需做一次
在192.168.31.130上执行如下命令
cd /opt/linuxsir/hadoop/bin
./hdfs namenode -format
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
cd /opt/linuxsir/hadoop/sbin
./start-all.sh
\如果要停止,请执行如下命令
cd /opt/linuxsir/hadoop/sbin
./stop-all.sh
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
\如果要停止,请执行如下命令,即分开停止HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
现在,可以在三个节点上,查看进程,验证Hadoop是否成功启动
[root@hd-master bin]# jps
6262 NameNode
28630 Jps
6455 SecondaryNameNode
6618 ResourceManager
[root@hd-master bin]# ssh root@192.168.31.132 jps
3431 NodeManager
20697 Jps
3311 DataNode
[root@hd-master bin]# ssh root@192.168.31.133 jps
3313 DataNode
3431 NodeManager
20295 Jps
到目前为止,启动HDFS和YARN以后,各个节点的进程,如下图所示
| 层级 | hd-master | hd-slave1 | hd-slave2 |
|---|---|---|---|
| hdfs层 | NameNode、Secondary、NameNode | DataNode | DataNode |
| Yarn层 | ResourceManager | NodeManager | NodeManager |
| hardware各个节点 | 192.168.31.131 | 192.168.31.132 | 192.168.31.133 |
在hd-master上运行如下命令,报告HDFS的基本信息
cd /opt/linuxsir/hadoop
./bin/hdfs dfsadmin -report
[root@hd-master bin]# cd /opt/linuxsir/hadoop
[root@hd-master hadoop]# ./bin/hdfs dfsadmin -report
Configured Capacity: 63116517376 (58.78 GB)
Present Capacity: 52430880768 (48.83 GB)
DFS Remaining: 52430462976 (48.83 GB)
DFS Used: 417792 (408 KB)
DFS Used%: 0.00%
Under replicated blocks: 2
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
-------------------------------------------------
Live datanodes (2):
Name: 192.168.31.133:50010 (hd-slave2)
Hostname: hd-slave2
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5349883904 (4.98 GB)
DFS Remaining: 26208165888 (24.41 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.05%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
Name: 192.168.31.132:50010 (hd-slave1)
Hostname: hd-slave1
Decommission Status : Normal
Configured Capacity: 31558258688 (29.39 GB)
DFS Used: 208896 (204 KB)
Non DFS Used: 5335752704 (4.97 GB)
DFS Remaining: 26222297088 (24.42 GB)
DFS Used%: 0.00%
DFS Remaining%: 83.09%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Oct 11 01:29:14 PDT 2024
如果Hadoop启动出问题,可以通过查看日志来寻找原因。每次启动Hadoop,应该首先清空三个节点的logs目录,方便寻找错误。
当启动出错,可以到相应节点上,查看日志文件。哪个节点启动出错,就看哪个节点的日志文件。由于有无密码ssh登录,可以通过主节点登录到其它节点,去查看所有节点的日志文件。
日志文件分别在hd-master、hd-slave1、hd-slave2的/opt/linuxsir/hadoop/logs目录下。
启动Hadoop之前,删除log文件
如果启动出问题,log文件里就是最新的出错信息
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
若干web管理界面,列表如下
访问NameNode管理页面,监控文件系统。 http://192.168.31.131:50070/

访问ResourceManager(整个Cluster)管理页面,监控集群状况。 http://192.168.31.131:9099/ 这个端口缺省是8088,由于端口冲突,改成9099, 参考yarn-site.xml

MapReduce JobHistory Server的管理页面,查看MapReduce作业提交历史;需要事先启动JobHistory Server。 http://192.168.31.131:19888/

cd /opt/linuxsir/hadoop/bin
hdfs dfsadmin -safemode leave
\ 用户可以通过dfsadmin -safemode value 来操作安全模式,参数value的说明如下:
\ enter - 进入安全模式
\ leave - 强制NameNode离开安全模式
\ get - 返回安全模式是否开启的信息
\ wait - 等待,一直到安全模式结束
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm -r /input \ 递归式删除目录
./hdfs dfs -mkdir /input \ 创建目录
./hdfs dfs -chmod a+rwx /input \ 授权
./hdfs dfs -mkdir /output \ 创建目录
./hdfs dfs -copyFromLocal /opt/linuxsir/test.txt /input \ 拷贝文件到HDFS
\ 或者./hdfs dfs -put /opt/linuxsir/test.txt /input
./hdfs dfs -cat /input/test.txt | head \ 显示文件的头几行
注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -cat /input/test.txt
./hadoop jar /opt/linuxsir/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/test.txt /output
./hdfs dfs -ls /output
./hdfs dfs -cat /output/part-r-00000
为了运行wordcount,必须保证hdfs分布式文件系统的/output不存在。如果存在可以把它删除,命令如下
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -ls /output
./hdfs dfs -rm /output/*
./hdfs dfs -rmdir /output
在hd-master节点上,配置History Server
1、在.../etc/hadoop/mapred-site.xml中配置以下内容
<property>
<name>mapreduce.jobhistory.address</name>
<value>hd-master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hd-master:19888</value>
</property>
2、把hd-master的新配置分发到所有节点即hd-slave1和hd-slave2。
clear
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave1:/opt/linuxsir/hadoop/etc/hadoop
scp /opt/linuxsir/hadoop/etc/hadoop/mapred-site.xml hd-slave2:/opt/linuxsir/hadoop/etc/hadoop
3、启动服务,在hd-master这台服务器上执行以下语句。 注意,需要事先启动HDFS和YARN
cd /opt/linuxsir/hadoop/sbin
mr-jobhistory-daemon.sh start historyserver
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
访问MapReduce JobHistory Server
http://192.168.31.131:19888/
为了顺利运行该实例,需要编辑/opt/linuxsir/hadoop/etc/hadoop/hdfs-site.xml配置文件,添加如下配置
<!-- for windows access linux HDFS -->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27