
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。
秋招面试数据分析,没有项目经验面试还有希望吗?从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?今天小编给大家推荐两个超好用的项目网站:
网址:https://www.kaggle.com Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。
网址:https://tianchi.aliyun.com/ Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。
另外,这里给大家整理了6个适合新人的项目:
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。 适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。 数据量:32列共12W数据量。 可以定义的问题: 1)基本情况:城市酒店和假日酒店预订需求和入住率比较; 2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况; 3)一年中最佳预订酒店时间; 4)利用Logistic预测酒店预订。
https://www.kaggle.com/sobhanmoosavi/us-accidents 覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。 适用场景:无明显行业标识,通用。数据量:49列共300W数据量。 可以定义的问题:
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。 适用场景:电商、游戏销售,常规销售数据。数据量:11列共1.66W数据量。 可以定义的问题: 1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等; 2)预测每年电子游戏销售额。 3)可视化应用:如何完整清晰地展示这个销售故事。
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。 可以定义的问题: 1)最初选择的各种预测因素是否会真正影响预期寿命? 2)哪些预测变量实际上会影响预期寿命? 3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命? 4)婴儿和成人死亡率如何影响预期寿命? 5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关? 6)学校教育对人类寿命有何影响? 7)预期寿命与饮酒有正面还是负面的关系?
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。 可以定义的问题: 1)通过分析该数据集可以找出员工流失的因素2)工作角色和流失率的相关性; 3)离家距离与流失率的相关性; 4)平均月收入和受教育程度对流失率的影响?
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
数据内容:数据分为汇总版和明细版两类。 数据包括: 短租房源基础信息,包括房源、房东、位置、类型、价格、评论数量和可租时间等等。另外还有短租房源时间表信息,包括房源、时间、是否可租、租金和可租天数等等。 可以定义的问题: (1)计算房东的质量分数,实现房东的精细化运营管理。 (2)通过对房源信息进行量化,挖掘最受用户欢迎的房源。 (3)向客户推荐各个地区“最便宜”、“最精致”、“最小资”、“最有性价比”……的房源。
顺道再说一下CDA数据分析师一级,这个证书真的实用性特别高,很多考点在工作中都能遇到应用场景,如果有小伙伴想提升数据分析能力,那可以以考代练,考过CDA数据分析一级顺便提升能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22