京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。

秋招面试数据分析,没有项目经验面试还有希望吗?从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?今天小编给大家推荐两个超好用的项目网站:
网址:https://www.kaggle.com Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。

网址:https://tianchi.aliyun.com/ Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。

另外,这里给大家整理了6个适合新人的项目:
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。 适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。 数据量:32列共12W数据量。 可以定义的问题: 1)基本情况:城市酒店和假日酒店预订需求和入住率比较; 2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况; 3)一年中最佳预订酒店时间; 4)利用Logistic预测酒店预订。
https://www.kaggle.com/sobhanmoosavi/us-accidents 覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。 适用场景:无明显行业标识,通用。数据量:49列共300W数据量。 可以定义的问题:
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。 适用场景:电商、游戏销售,常规销售数据。数据量:11列共1.66W数据量。 可以定义的问题: 1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等; 2)预测每年电子游戏销售额。 3)可视化应用:如何完整清晰地展示这个销售故事。
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。 可以定义的问题: 1)最初选择的各种预测因素是否会真正影响预期寿命? 2)哪些预测变量实际上会影响预期寿命? 3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命? 4)婴儿和成人死亡率如何影响预期寿命? 5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关? 6)学校教育对人类寿命有何影响? 7)预期寿命与饮酒有正面还是负面的关系?
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。 可以定义的问题: 1)通过分析该数据集可以找出员工流失的因素2)工作角色和流失率的相关性; 3)离家距离与流失率的相关性; 4)平均月收入和受教育程度对流失率的影响?
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
数据内容:数据分为汇总版和明细版两类。 数据包括: 短租房源基础信息,包括房源、房东、位置、类型、价格、评论数量和可租时间等等。另外还有短租房源时间表信息,包括房源、时间、是否可租、租金和可租天数等等。 可以定义的问题: (1)计算房东的质量分数,实现房东的精细化运营管理。 (2)通过对房源信息进行量化,挖掘最受用户欢迎的房源。 (3)向客户推荐各个地区“最便宜”、“最精致”、“最小资”、“最有性价比”……的房源。
顺道再说一下CDA数据分析师一级,这个证书真的实用性特别高,很多考点在工作中都能遇到应用场景,如果有小伙伴想提升数据分析能力,那可以以考代练,考过CDA数据分析一级顺便提升能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20