京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学与大数据技术专业是一门交叉学科,涵盖了统计学、数学和计算机科学等多个领域。这个专业不仅需要扎实的理论基础,还需要丰富的实践经验。以下是该专业的详细课程介绍:

此外,一些高校还开设了其他相关课程,如《Hadoop大数据技术》实验课程,主要教授Hadoop分布式文件系统(HDFS)、分布式数据库(如HBase)以及MapReduce编程模型等内容。这些课程旨在帮助学生掌握处理大规模数据的技术和工具。

数据科学与大数据技术专业学生在学习过程中常见的挑战主要包括以下几个方面:

在数据科学与大数据技术领域,当前的研究热点主要集中在以下几个方面:

针对数据科学与大数据技术专业的学生,有多种实习和项目机会可以提升实践能力。以下是一些推荐的实习和项目机会:
在线实习项目:
具体公司实习机会:
行业特定项目:
个人项目经验:
持续学习和挑战:
数据科学与大数据技术专业的就业前景和薪资水平在近年来表现出色,成为热门专业之一。毕业生可以在多个领域找到工作机会,包括互联网公司、金融机构、IT公司、政府部门以及传统行业企业等。具体岗位方向主要有三大类:大数据系统研发类、大数据应用开发类和大数据分析类。此外,毕业生还可以从事企业数据库开发维护、用户数据的挖掘与分析、市场分析与预测等工作。
根据最新统计数据显示,数据科学与大数据技术专业2022届本科毕业生半年后的月收入达到7074元,高于全国平均水平。这一数据表明该专业的毕业生具有较高的薪酬竞争力。另外,初级大数据工程师的月薪通常在15000元至25000元之间,而有经验的高级大数据工程师的月薪可以达到25000元至50000元以上。
此外,在数据科学和大数据技术领域,获得行业认可的认证可以极大地提升职业竞争力。**CDA(Certified Data Analyst)**认证就是其中之一。该认证不仅验证了持证人在数据分析领域的技术能力,还在求职过程中为其提供了显著优势。许多公司在招聘或评估员工时,会特别看重CDA认证,因为它代表了持证人具备扎实的技术基础和实际操作能力。
数据科学与大数据技术专业的课程设置非常广泛且多样,涵盖了从基础数学和编程到高级数据分析和机器学习的各个方面,为学生提供了全面而系统的知识体系。尽管学习过程充满挑战,但通过不断的实践和学习,学生可以掌握处理大规模数据的技术和工具,为未来的职业发展打下坚实的基础。无论是通过实习项目、行业认证如CDA认证,还是持续的学习和实践,提升自己的实践能力和专业素养,都将为未来的职业道路铺平道路。
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03