
随着数据行业的不断发展,数据分析师这一职业变得越来越重要,而获得相关的资格认证也成为进入这一领域的重要途径。然而,对于准备参加2024年数据分析师考试的考生来说,了解考试的难度及通过率是非常关键的。
根据以往的数据,数据分析师认证的整体通过率较高,通常在70%左右。但这并不意味着所有级别的考试都如此轻松。实际上,不同级别的考试难度和通过率有显著差异。比如,在CDA数据分析师认证考试中,数据分析师(Level 1)的通过率约为75%,数据分析师(Level 2)的通过率为55%左右,而高级数据分析师(Level 3)的通过率则降至30%。随着级别的提升,考试的难度逐步增加,通过率也相应下降。
从这些数据中不难看出,数据分析师的考试并非一蹴而就,需要考生具备扎实的数据分析能力和实践经验。尤其是对于那些打算挑战高级别考试的考生,更是需要在理论知识和实操技能上投入大量时间和精力。
回顾我自己早年的学习经历,我当时为了通过一个数据分析认证考试,反复练习了多个数据建模项目,甚至参与了行业内的实习。尽管过程艰辛,但这段经历让我深刻理解了理论与实践结合的重要性。而这也是我对所有备考2024年数据分析师考试的考生的忠告:不仅要掌握理论,更要通过实践将知识内化为技能。
2024年数据分析师考试报名条件与流程
想要参加2024年的数据分析师考试,首先需要满足一定的报名条件和流程。以下是详细的报名要求:
• 学历要求:无要求。
• 年龄要求:一般要求年满18周岁。
• 工作经验:无要求。
• 其他要求:需要逐级考试,不能跨级考试。
报名流程相对简单,考生需要在线注册,填写相关资料,完成缴费并通过审核即可。一年之内选择考试时间和地点,线下上机考试。
考试内容涵盖了理论知识和实践操作,一级二级考试为客观题。客观题部分包括单选、多选,还有材料分析题,三级考试除了客观题外,案例操作部分则要求考生在120分钟内完成。2024年的考试时间也已经公布,每年3月、6月、9月和12月的第四周周六。
2024年数据分析师考试内容更新与变化
2024年,数据分析师考试内容将迎来多项重要更新:
随着考试内容的更新和考试形式的调整,考生需要在备考时更加注重知识的全面掌握和实际应用能力的提升。
如何有效备考2024年数据分析师考试?
备考2024年的数据分析师考试并不是一件轻松的事情。无论你是准备初级、中级还是高级认证,均需根据不同的级别采取相应的备考策略。
CDA数据分析师:
CDA数据分析师认证分为三个等级:Level I、Level II和Level III。每个等级的考试内容和难度各不相同。Level I主要涵盖描述性统计和基础数据分析技能,适合零基础的转行者和应届毕业生。备考时,考生可以通过在线课程、模拟考试以及参加公开课等方式,系统地掌握数据分析原理和工具。
通用备考策略:
无论你准备哪个级别的认证,保持良好的心态至关重要。同时,通过模拟练习熟练掌握知识点和考试技巧也是提高通过率的关键。
影响2024年数据分析师考试通过率的因素
影响2024年数据分析师考试通过率的因素多种多样,包括考生背景、考试难度、考试形式以及行业需求等。
考生背景:
考生的学术成绩、尤其是数学成绩,对考试通过率有显著影响。根据研究,大学数学第一学期成绩是学生成功攻读数据分析学位的最强指标。
考试难度:
考试难度的提升也是通过率下降的原因之一。数据分析师认证考试从每年两次的全国统考升级为随报随考,考试难度也相应增加。这种更高的要求使得考生需要更充分的准备。
综合来看,影响2024年数据分析师考试通过率的因素复杂多样。对于考生来说,最重要的是充分备考,不断提升自己的专业能力,最终在考试中取得好成绩。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10