京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化在现代信息时代中扮演着重要的角色。通过合适的图表类型展示数据可以更加清晰地传达信息,帮助我们理解和分析数据。然而,在选择图表类型时可能会面临一些困惑,因为有许多不同的选项可供选择。本文将介绍一些常见的图表类型,并提供选择最适合的图表类型的几个关键因素。
一、条形图(Bar Charts): 条形图是用来比较不同类别之间的数据大小或者显示时间序列数据的变化趋势。它们通常以垂直或水平的条形表示数据,并且每个条形的长度或高度与数据的数值成比例。条形图在展示大量分类数据时非常实用,并且易于理解。
二、折线图(Line Charts): 折线图用于显示随时间变化的数据趋势。它们通过连接数据点创建连续的折线,从而使我们能够观察到数据的变化趋势和模式。折线图常用于展示股票价格、气温变化等连续性数据,并且可以用来比较多组数据之间的差异。
三、饼图(Pie Charts): 饼图用来展示不同类别在整体中所占比例的数据。它们通过将整个圆分成不同大小的扇形,每个扇形代表一个类别,并且扇形的面积与该类别的比例成正比。饼图适用于显示相对比例关系,但不适合展示大量类别或者比较小的差异。
四、散点图(Scatter Plots): 散点图通常用于展示两个变量之间的关系。它们以坐标轴为基础,通过绘制数据点的位置表示两个变量的值,并且可以观察到数据点的分布情况。散点图可以帮助我们发现变量之间的相关性、群集和异常值等模式。
五、箱线图(Box Plots): 箱线图用于显示数据的分布情况和离群值。它们通过绘制一条水平线和一个矩形箱来表示数据的中位数、上下四分位数和离群值范围。箱线图有助于比较多组数据的分布情况,识别异常值,并提供了数据的概览。
选择最适合的图表类型的几个关键因素:
提供更详细的对比。
数据重点:确定你想要强调的数据重点。如果你希望突出显示每个类别的大小差异,条形图可以清晰地传达这一点;如果你想要展示整体构成和相对比例,则饼图可以更好地呈现。
受众和目的:考虑你的受众是谁以及你的数据可视化的目的是什么。不同的图表类型可能更适合特定的受众群体或特定的沟通目的。例如,如果你与非专业人士分享数据,简单直观的图表类型可能更容易理解。
美观性和可读性:最后,考虑图表的美观性和可读性。选择一个清晰、简洁且易于阅读的图表类型,避免图表过于复杂或拥挤,以确保你的数据能够有效地传达给观众。
在选择最适合的图表类型时,需要综合考虑数据类型、数据关系、数据数量、数据变化、数据重点、受众和目的,同时注重图表的美观性和可读性。不同的图表类型适用于不同的情景,选择合适的图表类型能够让数据更加清晰、易于理解,并帮助我们发现数据中的模式和趋势。通过合理选择图表类型,我们可以提升数据可视化的效果,使其更具说服力和表达力。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27