京公网安备 11010802034615号
经营许可证编号:京B2-20210330
统计学是一门研究如何收集、分析、解释和呈现数据的学科,已经成为现代社会中不可或缺的一部分。无论是在商业、教育、医疗保健、政治、环境或其他领域,统计学都可以帮助人们更好地理解数据,做出更好的决策。在本文中,我们将探讨如何运用统计学分析数据。
首先,了解数据类型和分布是统计分析的基础。数据分为两种类型:定量数据和定性数据。 定量数据是可以用数字来度量的数据,例如身高、体重、收入等。 定性数据则是不能用数字来度量的数据,例如性别、职业、品牌喜好等。 在了解数据类型之后,需要了解数据分布。 数据分布描述数据值在整个数据集中的分布情况。常见的数据分布包括正态分布、均匀分布等。了解数据的类型和分布可以帮助我们选择正确的统计方法,更准确地解释数据。
其次,要根据问题类型选择正确的统计方法。 有两种统计方法:描述性统计和推断性统计。 描述性统计描述数据的基本特征,例如平均数、中位数、众数、标准差等。 推断性统计则是根据样本数据进行推断,以获得总体数据的估计值。 推断性统计包括假设检验和置信区间。 假设检验用于检验研究者提供的某种假设是否成立。 置信区间用于确定总体参数的范围。
然后,要选择正确的可视化工具来呈现数据。 可视化工具可以帮助人们更好地理解数据,例如散点图、柱状图等。 可视化工具可以使数据更加直观和易于解释。 例如,在比较两个群体的平均数时,使用柱状图可以更容易地看出哪个群体的平均数更高。
接下来,要考虑数据质量问题。 数据质量对统计分析至关重要。 如果数据不准确或缺失,则可能导致错误的结论。 因此,在进行统计分析之前,需要对数据进行清理和处理。 清理数据包括删除不必要的数据行或列,填补缺失值,处理异常值等。
最后,进行误差分析和解释。 在分析数据之后,我们需要评估结果的准确性和可靠性。 这可以通过误差分析来完成。 误差分析是指评估模型或方法的准确性的过程。 例如,在回归分析中,误差分析可以帮助我们确定模型的可靠性以及哪些因素对结果的影响最大。
总之,统计学是一项强有力的工具,可用于解释和呈现数据。 在进行统计分析时,需要了解数据类型和分布,选择正确的统计方法和可视化工具,进行数据清理和误差分析。 通过这些步骤,可以更好地理解数据并做出更好的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31