
SQLite是一种轻量级的关系型数据库,它被广泛用于嵌入式设备和小型应用程序中。Python中的Pandas库提供了一个简单而强大的接口来处理SQLite数据库。
在本文中,我们将探讨如何使用Python和Pandas来连接、查询和修改SQLite数据库。我们将从安装必要的软件开始,然后介绍基本的Pandas操作,最后演示如何使用SQLite作为数据存储。
首先,我们需要确保我们已经安装了Python和Pandas库。如果您还没有这些软件,请按照下面的步骤进行安装:
在我们开始连接SQLite数据库之前,我们还需要安装SQLite驱动程序。有几个选项可供选择,但我建议使用sqlite3模块,因为它与Python标准库捆绑在一起,所以无需额外安装。
如果您使用的是较新的Python版本,则可能无需安装任何东西。否则,请在命令行中键入以下内容:
pip install pysqlite3
一旦我们完成了安装,就可以使用Pandas连接到SQLite数据库了。下面是一个基本的例子:
import pandas as pd import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 从数据库中读取数据并转换为DataFrame对象 df = pd.read_sql_query("SELECT * FROM my_table", conn) # 关闭连接 conn.close()
在这个例子中,我们首先创建了一个名为example.db的SQLite数据库的连接对象。然后,我们使用pd.read_sql_query()函数将一个SQL查询结果转换为Pandas DataFrame对象。最后,我们关闭了与数据库的连接。
请注意,pd.read_sql_query()函数接受两个参数:SQL查询和连接对象。如果您有一个更复杂的查询,可以直接将查询字符串传递给该函数。
一旦我们成功连接到SQLite数据库,我们就可以在Pandas DataFrame中执行各种操作了。以下是一些例子:
# 选择特定列 df[['col1', 'col2']] # 过滤行 df[df['col1'] > 10] # 排序 df.sort_values('col1')
# 增加新列 df['new_col'] = df['col1'] + df['col2'] # 替换值 df.loc[df['col1'] == 10, 'col2'] = 0 # 删除行 df.drop(index=[0, 1])
# 计算总和 df.sum() # 按列分组,并计算平均值 df.groupby('col1').mean()
上面这些是Pandas中最基本的操作,但它们足以处理大多数数据集。
最后,我们将演示如何使用SQLite作为数据存储。要创建一个新表,请执行以下操作:
import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 创建一个游标对象 c = conn.cursor() # 执行SQL语句来创建一个新表 c.execute('''CREATE TABLE my_table
(id INTEGER PRIMARY KEY,
col1 INTEGER,
col2 TEXT)''') # 提交更改并关闭连接 conn.commit()
conn.close()
在上面的例子中,我们首先创建了一个连接到example.db数据库的连接对象。然后,我们创建了一个游标对象,该对象用于执行SQL命令。接下来
,我们使用execute()方法执行了一条SQL命令来创建名为my_table的新表,该表包含三个列。最后,我们提交更改并关闭连接。
在表中插入数据也很简单:
import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 创建一个游标对象 c = conn.cursor() # 插入一行数据 c.execute("INSERT INTO my_table (col1, col2) VALUES (?, ?)", (10, 'hello')) # 提交更改并关闭连接 conn.commit()
conn.close()
在上面的例子中,我们使用execute()方法来插入一行数据到my_table表中。我们使用占位符?和元组(10, 'hello')来传递值。
最后,要从表中检索数据,请使用与前面示例中相同的代码。您只需更新查询字符串即可:
import pandas as pd import sqlite3 # 创建一个连接对象 conn = sqlite3.connect('example.db') # 从数据库中读取数据并转换为DataFrame对象 df = pd.read_sql_query("SELECT * FROM my_table", conn) # 关闭连接 conn.close()
这将检索整个my_table表的所有行和列,并将其转换为Pandas DataFrame对象。
本文介绍了如何使用Python和Pandas处理SQLite数据库。我们首先安装了必要的软件,然后演示了如何连接到数据库,并使用Pandas执行各种操作。最后,我们展示了如何使用SQLite作为数据存储,并插入和检索数据。
SQLite是一种轻量级的数据库,但它非常强大。结合Python和Pandas,可以使用SQLite来处理各种类型的数据集。这些技术可用于许多应用程序领域,例如数据科学、Web开发和物联网设备。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12