
requests和urllib.request是Python中两个常用的HTTP客户端库,它们都可以用来发送HTTP请求并处理响应。但是,它们之间也有一些重要的区别。
首先,requests是一个第三方库,而urllib.request是Python标准库的一部分。因此,使用requests需要先安装该库,而urllib.request则已经包含在Python中。当然,随着Python版本的不同,urllib.request的功能也会有所变化。
其次,在使用上,requests相对于urllib.request更加简单易用。requests提供了一系列的高级API,使得常见的HTTP请求操作变得十分容易。例如,发送一个GET请求只需要一行代码:response = requests.get(url)
。同时,requests还支持自动解析JSON格式的响应、文件上传、会话管理等高级功能,让开发者能够更快速地完成复杂的HTTP请求操作。而urllib.request相对于requests就显得笨拙一些,需要较多的代码来实现相同的功能。
另外,requests提供了更加灵活的错误处理机制。当发生网络错误或服务器返回错误状态码时,requests会抛出相应的异常,如ConnectionError、Timeout等,方便开发者进行相应的处理。而在urllib.request中,需要通过捕获URLError异常来处理网络错误,并通过判断HTTP状态码来处理服务器返回的错误信息。
此外,requests的性能也比urllib.request更好。requests使用了基于urllib3的连接池技术,可以重用TCP连接,减少了请求响应的延迟和网络带宽的占用,并且对HTTPS的支持也更加完善。而urllib.request则需要每次发送请求都重新建立连接,相比之下性能较差。
最后,requests具有更广泛的社区支持和文档资料。由于requests易用性高、功能强大、性能优越,所以在Python开发者中拥有非常广泛的用户群体,因此相关的问题和解决方案也更容易找到。而urllib.request则相对来说受关注度较少,相关文档资料也比较匮乏。
综上所述,requests和urllib.request虽然都是Python中常用的HTTP客户端库,但是在使用上存在一些区别,开发者可以根据自己的需要灵活选择。如果只是简单地进行HTTP请求操作,或者需要与标准库紧密集成,那么urllib.request可以满足要求;如果需要高级功能、更好的性能和灵活的错误处理,或者需要更广泛的社区支持,那么建议选择requests。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10