京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Pandas 中,DataFrame 是一个非常重要且常用的数据结构,它提供了对表格数据进行操作的强大功能。当我们需要遍历 DataFrame 的行时,通常有两种方法可供选择:使用 iterrows() 方法和使用 itertuples() 方法。这篇文章将详细介绍这两种方法的使用方法和性能差异。
iterrows() 方法是 Pandas 中最常用的遍历 DataFrame 行的方法之一。它可以将 DataFrame 中的每一行转换为一个元组,其中包含行索引和行数据。下面是使用 iterrows() 方法遍历 DataFrame 行的基本示例:
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
# 遍历 DataFrame 行
for index, row in df.iterrows():
print(f"Row index: {index}, Row data: {row}")
在上面的代码中,我们首先创建了一个简单的 DataFrame,然后使用 iterrows() 方法遍历了每一行,并打印出了行索引和行数据。输出结果如下:
Row index: 0, Row data: col1 1
col2 3
Name: 0, dtype: int64
Row index: 1, Row data: col1 2
col2 4
Name: 1, dtype: int64
从输出结果可以看出,iterrows() 方法返回的是一个元组,其中第一个元素是行索引,第二个元素是一个 Series 对象,它包含了该行的数据。我们可以使用 .loc[] 方法来访问该 Series 对象中的每个元素。
虽然 iterrows() 方法非常方便,但它并不适合处理大型 DataFrame。这是因为 iterrows() 是一种基于 Python for 循环的方法,它需要遍历整个 DataFrame 的每一行,并将其转换为一个元组。对于大型 DataFrame,这种方法的计算成本非常高,因此可能会导致性能问题。
如果您需要处理大型 DataFrame,那么建议使用 itertuples() 方法而不是 iterrows() 方法。itertuples() 方法返回一个生成器对象,其中包含每一行的命名元组(namedtuple)。与 iterrows() 方法不同,itertuples() 方法会在 DataFrame 中更快地处理大量数据。下面是使用 itertuples() 方法遍历 DataFrame 行的示例:
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
# 遍历 DataFrame 行
for row in df.itertuples():
print(row)
在上面的代码中,我们首先创建了一个简单的 DataFrame,然后使用 itertuples() 方法遍历了每一行,并打印出了命名元组。输出结果如下:
Pandas(Index=0, col1=1, col2=3)
Pandas(Index=1, col1=2, col2=4)
从输出结果可以看出,itertuples() 方法返回的是一个命名元组,其中包含行索引和行数据。与 iterrows() 方法不同,它并没有将每一行转换为一个 Series 对象。这样可以减少额外的计算成本,并提高代码的性能。
使用 iterrows() 方法或 itertuples() 方法都可以遍历 DataFrame 行。但是,由于 iterrows() 方法需要将每一行转换为一个元组,因此它在处理大型 DataFrame 时可能会导致性能问题。相比之下,itertuples() 方法更加快速和高效,因为它直接返回一个元组,而不需要将其转换为 Series 对象。
因此,建议在处理大型 DataFrame 时使用 itertuples() 方法,以
提高代码的性能。但是,在处理小型 DataFrame 时,iterrows() 方法的速度可能更快,因为它比 itertuples() 方法少了一些额外的计算成本。
另外,需要注意的是,使用 iterrows() 方法或 itertuples() 方法遍历 DataFrame 行时,都不能修改数据框的值。如果需要修改 DataFrame 数据,则应该使用 .loc[] 方法或类似方法。
遍历 DataFrame 行是在 Pandas 中常见的操作之一。有两种方法可以实现这个目标:iterrows() 方法和itertuples() 方法。虽然这两种方法都可以遍历 DataFrame 行,但是它们的性能差异很大。如果需要处理大型 DataFrame,则建议使用 itertuples() 方法以提高代码的性能。但是,在处理小型 DataFrame 时,iterrows() 方法可能更快。
无论使用哪种方法,都应该记住不能直接修改 DataFrame 的值。如果需要修改 DataFrame 数据,则应该使用类似 .loc[] 方法的方法。
希望本文对您在 Pandas 中遍历 DataFrame 行有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15