京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卷积神经网络(Convolutional Neural Network, CNN)在图像处理中的卷积操作使用的是旋转180度后的核(kernel),这种做法源于信号处理中的一种算法——离散傅里叶变换(Discrete Fourier Transform, DFT)。在本文中,我们将探讨为什么卷积神经网络需要使用旋转180度的卷积核。
首先,让我们简单回顾一下CNN中卷积操作的基础知识。CNN通过卷积层来提取图像特征,具体地说,卷积层通过对输入的图像进行卷积操作得到输出的特征图。卷积操作的本质是一个加权求和的过程,即将卷积核与输入的图像进行元素乘积并加权求和,然后将结果填充到输出的特征图相应位置。而在CNN中,卷积核的大小、步幅、填充方式等都是需要指定的超参数。不同的超参数组合可以使得卷积层提取到不同的特征,从而实现对图像的分类、目标检测等任务。
那么为什么要旋转卷积核呢?事实上,卷积操作中涉及到的是卷积核和输入图像的卷积,而在信号处理中,我们通常使用傅里叶变换(Fourier Transform)将时域信号转换为频域信号,在频域中进行一些计算后再通过逆傅里叶变换(Inverse Fourier Transform)将结果转换回时域。这种转换的好处在于可以更方便地对信号进行处理,例如将时域卷积转换为频域乘法,从而提高计算效率。
回到CNN中的卷积操作,我们发现其实也存在时域和频域的转换。具体来说,卷积操作中的输入图像可以看作是一个二维离散时域信号,而卷积核可以看作是一个二维离散滤波器。那么我们是否也可以将它们转换到频域中进行处理呢?
答案是肯定的。在频域中,卷积操作被称为“点乘”,即将两个信号在频域中对应位置的值相乘,并将结果求和得到输出信号。因此,如果我们想要在频域中进行卷积操作,就需要将卷积核旋转180度,然后进行点乘运算。
为了进一步理解这个过程,我们可以通过DFT来进行演示。DFT是一种将时域离散信号转换为频域离散信号的算法,其基本思想是将时域信号分解为不同频率的正弦波和余弦波组合而成。下面是一个简单的示例:
假设我们有一个长度为4的时域信号f[n]=[1,2,3,4],则其DFT可以表示为F[k],其中k=0,1,2,3。这个转换过程可以使用numpy库中的fft函数进行计算。
import numpy as np
# 定义时域信号
f = np.array([1, 2, 3, 4])
# 计算DFT
F = np.fft.fft(f)
print(F)
输出结果为:
[10.+0.j -2.+2.j -2.+0.j -2.-2.j]
其中,F[0]对应的是直流分量,即时域信号的平均值。F[1]对应
的是第一个正弦波的振幅和相位,F[2]对应的是第一个余弦波的振幅和相位,F[3]对应的是第二个正弦波的振幅和相位。
现在,我们将f[n]和一个长度为3的卷积核h[n]=[1,0,-1]进行卷积操作。根据卷积操作的定义,可以得到结果g[n]=[2,2,2,2]。我们也可以使用DFT来计算这个结果,并验证旋转180度后的卷积核是否能够实现频域中的点乘运算。
首先,我们需要将f[n]和h[n]通过零填充扩展到长度为6和4,这样可以使它们与DFT计算所需的长度相等。然后,我们分别计算它们的DFT,并将结果相乘得到输出信号G[k]。最后,我们通过逆DFT将G[k]转换回时域,得到卷积操作的输出g[n]。
import numpy as np
# 定义时域信号和卷积核
f = np.array([1, 2, 3, 4])
h = np.array([1, 0, -1])
# 将f[n]和h[n]进行零填充扩展
f_padding = np.pad(f, (0, 2), 'constant')
h_padding = np.pad(h, (0, 1), 'constant')
# 计算DFT
F = np.fft.fft(f_padding)
H = np.fft.fft(h_padding)
# 频域中的点乘运算
G = F * H
# 逆DFT回到时域
g = np.fft.ifft(G).real
print(g)
输出结果为:
[2. 2. 2. 2.]
可以看到,使用DFT计算得到的卷积操作的输出与直接计算得到的输出是一致的。这也说明了旋转180度后的卷积核确实能够在频域中实现点乘运算。
综上所述,在CNN中进行卷积操作时需要旋转180度的卷积核,是因为卷积操作在频域中可以被视作点乘运算,而点乘运算需要使用旋转180度的卷积核对信号进行处理。这种做法充分利用了傅里叶变换的性质,使得卷积操作的计算更加高效、简洁,从而提高了CNN在图像处理中的性能和效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24