京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变量 LSTM 模型来进行时间序列预测,并且给出一个例子来预测未来一周的气温。
首先,我们需要准备数据集。在本例中,我们将使用包含多个变量的天气数据。这些变量包括温度、湿度、风速、降雨量等。我们将选取最近一年的数据,将其前80%作为训练集,后20%作为测试集。
接下来,我们需要对数据进行归一化处理。由于不同变量之间的值域差异较大,我们需要将其进行缩放到一个相同的范围内。这里我们将使用 Scikit-Learn 库中的MinMaxScaler函数。
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
接下来,我们需要将数据转换成适合 LSTM 模型的格式。在多变量情况下,我们需要将每个时刻的输入向量扩展到包含多个变量。这里我们将以过去 30 天的数据为输入,预测未来一周的气温。
import numpy as np def create_dataset(X, y, time_steps=1):
Xs, ys = [], [] for i in range(len(X) - time_steps):
v = X[i:i + time_steps]
Xs.append(v)
ys.append(y[i + time_steps]) return np.array(Xs), np.array(ys)
TIME_STEPS = 30 X_train, y_train = create_dataset(train_data, train_data[:, 0], TIME_STEPS)
X_test, y_test = create_dataset(test_data, test_data[:, 0], TIME_STEPS)
接下来,我们可以构建 LSTM 模型。在本例中,我们将使用两层 LSTM 和一个全连接层。模型的输入形状应该是(samples, time_steps, features)。
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM
model = Sequential([
LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),
LSTM(units=32, return_sequences=False),
Dense(units=1)])
在训练模型之前,我们需要定义损失函数和优化器,并编译模型。
model.compile(loss='mean_squared_error', optimizer='adam')
现在,我们可以开始训练模型。在每个 epoch 后,我们将记录训练集和测试集上的损失值,并可视化它们的变化。
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False) import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
在模型训练完成后,我们可以对测试集进行预测,并将预测结果与真实值进行比较。
y_pred = model.predict(X_test)
plt.plot(y_test, label='true')
plt.plot(y_pred, label='predicted')
plt.legend()
plt.show()
最后,我们将使用训练好的模型来预测未来一周的气温。首先,我们需要获取最近 30 天的数据,然后使用模型进行预测。每次预测完之后,我们将新的预测值添加到输入序列中,用于下一次的预测。
X_last30
= test_data[-TIME_STEPS:] forecast = [] for i in range(7): y_pred_one = model.predict(X_last30.reshape(1, TIME_STEPS, -1)) forecast.append(y_pred_one[0, 0]) X_last30 = np.vstack((X_last30[1:], y_pred_one))
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
以上便是使用多变量 LSTM 进行时间序列预测的整个流程。通过训练模型,我们可以获得对未来数据的预测结果,并且不仅仅考虑了单一变量的影响,而是综合了多个变量的影响。当然,这只是一个简单的例子,实际应用中可能会涉及到更加复杂的数据和模型。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27