京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在逻辑回归中,分类变量是常见的特征。分类变量指的是只能取有限数量的离散值的变量,比如性别、国家等。在R语言中,处理分类变量有多种方法,下面将介绍其中几种常见的方法。
一、虚拟变量(dummy variable)
虚拟变量是将一个分类变量转换为多个二元变量的方法。对于一个具有m个不同取值的分类变量,可以创建m-1个虚拟变量。例如,对于一个二元分类变量“性别”,我们可以使用一个虚拟变量来表示它:当性别为男性时,虚拟变量为1,否则为0。如果我们采用两个虚拟变量,则一个表示男性,另一个表示女性。这里选用哪一个虚拟变量作为基准水平下的参考,我们可以根据需求自行设置。
在R中,我们可以使用“factor”函数将分类变量转换为因子(factors),然后利用“model.matrix”函数创建虚拟变量。以下是一个例子:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 创建虚拟变量 model.matrix(~ x)
运行结果如下:
(Intercept) xB xC
1 1 0 0
2 1 1 0
3 1 0 1
4 1 0 0
5 1 1 0
6 1 0 1
attr(,"assign")
[1] 0 1 2
attr(,"contrasts")
attr(,"contrasts")$x [1] "contr.treatment"
这里,“contr.treatment”表示使用第一个水平作为基准水平。因此,我们可以看出第一个观测值属于"A"类别,对应的虚拟变量为(1, 0, 0)。
二、特征缩放(feature scaling)
另一种处理分类变量的方法是特征缩放。特征缩放指的是将数据重新缩放到相同的尺度上,以便更好地比较和分析。在逻辑回归中,一种常见的特征缩放方法是最大-最小规范化,也称为离差标准化。
最大-最小规范化方法是将数值缩放到[0,1]区间内,具体步骤如下:
对每个特征,找到最小值(min)和最大值(max)。
对每个观测值,用以下公式计算缩放后的值:
$$ x_{scaled} = frac{x - x_{min}}{x_{max} - x_{min}} $$
在R中,可以使用以下代码对数据进行最大-最小规范化:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 将分类变量转换为数值变量并进行缩放 x_scaled <- (as.numeric(x) - min(as.numeric(x))) / (max(as.numeric(x)) - min(as.numeric(x)))
运行结果如下:
[1] 0.0 0.5 1.0 0.0 0.5 1.0
这里得到了一组缩放后的数值,它们都在[0,1]区间内。
三、哑变量编码(one-hot encoding)
哑变量编码是一种将分类变量转换为
数字变量的方法。与虚拟变量不同,哑变量编码会为每个分类变量取值分配一个唯一的整数编码,并将其转换为二进制数。每个编码都将对应一个新的变量。
例如,对于一个大小为3的分类变量"颜色"(红色、蓝色和绿色),我们可以使用哑变量编码来表示它:
| 颜色 | 编码 |
|---|---|
| 红色 | 001 |
| 蓝色 | 010 |
| 绿色 | 100 |
这里,每个编码都是三位数字,其中每个数字都是0或1,表示不同的颜色。在逻辑回归中,我们可以使用哑变量编码来处理分类变量。
在R中,可以使用以下代码进行哑变量编码:
# 创建一个包含三个不同取值("A"、"B"和"C")的分类变量 x <- factor(c("A", "B", "C", "A", "B", "C")) # 进行哑变量编码 model.matrix(~ x + 0)
这里,“+ 0”表示不包括截距项。运行结果如下:
xA xB xC
1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 0
5 0 1 0
6 0 0 1
attr(,"assign")
[1] 1 2 3
attr(,"contrasts")
attr(,"contrasts")$x [1] "contr.treatment"
这里,每个编码都对应一个新的变量,并且没有截距项。第一个观测值属于"A"类别,并且对应的编码为(1, 0, 0)。
总结
在逻辑回归中,处理分类变量有多种方法。其中,虚拟变量是最常见的方法之一,它将分类变量转换为多个二元变量。特征缩放和哑变量编码也是处理分类变量的常见方法。选择哪种方法取决于数据的特点和分析的需求。在R语言中,我们可以使用“model.matrix”函数来进行虚拟变量和哑变量编码,也可以手动实现这些方法。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06