
Pandas是Python中用于数据操作和分析的重要库。在Pandas中,shift()函数是一种用于将数据移动给定数量的行或列的方法。
具体来说,shift(1)可以被理解为一个参数为1的函数,它将每个元素向下移动一个位置,并用NaN填充第一行。类似地,shift(-1)将每个元素向上移动一个位置,并用NaN填充最后一行。这种移动可以应用于整个DataFrame或单个Series,并且可以用于多个不同的目的,包括计算差异、计算百分比变化、从前一个月到当前月等。
Shift()方法的使用方法很简单。下面是一些示例:
在某些情况下,我们需要计算相邻行之间的差异。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的差异。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_diff'] = df['price'] - df['price'].shift(1) print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的差异,并将结果存储在新的列“ price_diff”中。输出如下:
day price price_diff 0 Monday 100 NaN 1 Tuesday 120 20.0 2 Wednesday 130 10.0 3 Thursday 135 5.0 4 Friday 140 5.0
从输出可以看出,第一行的差异值为NaN,因为没有前一天的价格数据可用。
与计算价格差异类似,有时我们需要计算相邻行之间的百分比变化。例如,在股票市场数据中,我们可能需要计算每天的股票价格相对于前一天的股票价格的百分比变化。
让我们看一个简单的例子:
import pandas as pd
data = {'day': ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], 'price': [100, 120, 130, 135, 140]} df = pd.DataFrame(data) df['price_pct_change'] = (df['price'] - df['price'].shift(1)) / df['price'].shift(1) * 100 print(df)
在这个例子中,我们创建了一个包含日期和价格的DataFrame。然后,我们使用shift()函数计算相邻价格之间的百分比变化,并将结果存储在新的列“ price_pct_change”中。输出如下:
day price price_pct_change 0 Monday 100 NaN 1 Tuesday 120 20.000000 2 Wednesday 130 8.333333 3 Thursday 135 3.846154 4 Friday 140 3.703704
从输出可以看出,第一行的百分比变化值为NaN,因为没有前一天的价格数据可用。
除了计算相邻行之间的差异和百分比变化外,shift()函数还可以用于向前/向后移动数据。这对于在时间序列数据中转换数据非常有用,例如从前一个月到当前月。
让我们看一个简单的例子:
import pandas as pd
data = {'month': ['January', 'February', 'March', 'April', 'May'], 'sales': [100, 120, 130
, 135, 140]}
df = pd.DataFrame(data)
df_forward = df.shift(1) print(df_forward)
df_backward = df.shift(-1) print(df_backward)
在这个例子中,我们创建了一个包含月份和销售额的DataFrame。然后,我们使用shift()函数将数据向前/向后移动一行,并将结果存储在新的DataFrame中。输出如下:
month sales
0 NaN NaN 1 January 100.0 2 February 120.0 3 March 130.0 4 April 135.0
month sales
0 February 120.0 1 March 130.0 2 April 135.0 3 May 140.0 4 NaN NaN
从输出可以看出,向前移动一行会将第一行移除并用NaN填充,向后移动一行会将最后一行移除并用NaN填充。
总结
以上是关于Pandas中shift(1)用法的介绍。Shift函数是一个非常有用的函数,在处理时间序列数据时尤其实用。通过对相邻数据进行移动,我们可以计算差异、计算百分比变化或进行数据转换。希望这篇800字的文章能够帮助读者更好地理解Pandas中shift(1)的用法。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。
学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26