京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
小编最近碰上了一个数据分析利器,可以将我们需要的数据展示在网页上,并且进行相对深度的数据分析与挖掘,所以就打算借此机会和大家分享一下。
我们知道用Streamlit模块来进行web应用的开发真的非常的方便,但是在展示表格方面则显得十分地简陋,只有两个简单的接口函数,分别是st.table(df)和st.dataframe(df),对于字段较多的表格数据的展示非常的不友好,今天小编就来介绍一款Streamlit的插件,streamlit-aggrid,它的基础功能包括
首先我们先通过pip命令下载该模块
pip install streamlit-aggrid
我们先来写一个简单的demo,看一下该模块到底能实现哪些功能,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
AgGrid(shows)
output
我们和st.dataframe(shows)出来的结果相比,发现调用streamlit-aggrid模块展示出来的表格更加美观,如下图所示
不同方法的结果对比
当然我们还能够给数据进行排序,如下图所示
并且还可以根据指定的条件来进行数据的筛选,如下图所示
我们还可以按照自己的喜好来拖拽表格当中的每一列的数据,调整表格的顺序
除了上面的一些基本操作之外,streamlit-aggrid模块展示出来的表格数据还支持翻页操作,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions)
output
我们平常在Pandas模块当中用到的groupby分组统计来streamlit-aggrid模块当中也可以轻松地实现,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gb.configure_side_bar()
gb.configure_default_column(groupable=True, value=True, enableRowGroup=True, aggFunc="sum", editable=True)
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions, enable_enterprise_modules=True)
这样,在表格的最左侧会出现工具栏,我们可以在其中进行进一步的操作,如下图所示
在Pandas模块当中我们可以给指定的数据高亮显示,那么同样地在streamlit-aggrid模块当中也可以实现,代码如下
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
cellsytle_jscode = JsCode( """
function(params) {
if (params.value.includes('United States')) {
return {
'color': 'white',
'backgroundColor': 'red'
}
} else {
return {
'color': 'black',
'backgroundColor': 'white'
}
}
};
""" )
gb.configure_column("country", cellStyle=cellsytle_jscode)
gridOptions = gb.build()
data = AgGrid(
shows,
gridOptions=gridOptions,
enable_enterprise_modules=True,
allow_unsafe_jscode=True )
我们将国家为“美国”的电影数据用红色高亮显示出来,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23