京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
小编最近碰上了一个数据分析利器,可以将我们需要的数据展示在网页上,并且进行相对深度的数据分析与挖掘,所以就打算借此机会和大家分享一下。
我们知道用Streamlit模块来进行web应用的开发真的非常的方便,但是在展示表格方面则显得十分地简陋,只有两个简单的接口函数,分别是st.table(df)和st.dataframe(df),对于字段较多的表格数据的展示非常的不友好,今天小编就来介绍一款Streamlit的插件,streamlit-aggrid,它的基础功能包括
首先我们先通过pip命令下载该模块
pip install streamlit-aggrid
我们先来写一个简单的demo,看一下该模块到底能实现哪些功能,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
AgGrid(shows)
output
我们和st.dataframe(shows)出来的结果相比,发现调用streamlit-aggrid模块展示出来的表格更加美观,如下图所示
不同方法的结果对比
当然我们还能够给数据进行排序,如下图所示
并且还可以根据指定的条件来进行数据的筛选,如下图所示
我们还可以按照自己的喜好来拖拽表格当中的每一列的数据,调整表格的顺序
除了上面的一些基本操作之外,streamlit-aggrid模块展示出来的表格数据还支持翻页操作,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions)
output
我们平常在Pandas模块当中用到的groupby分组统计来streamlit-aggrid模块当中也可以轻松地实现,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gb.configure_side_bar()
gb.configure_default_column(groupable=True, value=True, enableRowGroup=True, aggFunc="sum", editable=True)
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions, enable_enterprise_modules=True)
这样,在表格的最左侧会出现工具栏,我们可以在其中进行进一步的操作,如下图所示
在Pandas模块当中我们可以给指定的数据高亮显示,那么同样地在streamlit-aggrid模块当中也可以实现,代码如下
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
cellsytle_jscode = JsCode( """
function(params) {
if (params.value.includes('United States')) {
return {
'color': 'white',
'backgroundColor': 'red'
}
} else {
return {
'color': 'black',
'backgroundColor': 'white'
}
}
};
""" )
gb.configure_column("country", cellStyle=cellsytle_jscode)
gridOptions = gb.build()
data = AgGrid(
shows,
gridOptions=gridOptions,
enable_enterprise_modules=True,
allow_unsafe_jscode=True )
我们将国家为“美国”的电影数据用红色高亮显示出来,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05