
罗曼·奥拉克,数据科学家。
我收到许多信息,向有抱负的数据科学家寻求建议。我不是职业建议方面的专家,所以对我写的一切都持怀疑态度。
我根据我对这个领域的观察和我多年来积累的经验给出建议。这是我,建议年轻的我,因为我有类似的问题,在我的职业生涯开始。
我的建议是从实际项目开始,然后慢慢地进行理论研究。Kaggle笔记本是学习实际部分的好方法。
在Reddit社区或交叉验证社区中提问。
当您对自己的工具和实践知识感到满意时,我建议您自己为某些问题构造数据集(例如,您可以刮取数据),并对其应用ML算法。ML中最难的是数据集的构造。你甚至可以用它建立一个公司。
Kaggle是学习实际部分的一个很好的方法。
我建议您从免费资源开始,因为有许多免费资源可用于编程、机器学习和数据科学:
我个人很喜欢吴恩达的Machine LearningCoursera课程。这门课程开始很容易,然后随着它的进行逐渐变得困难。它的优点在于它专注于机器学习的基础知识。
我建议你至少听前几堂课。如果你不明白所有的事情,也不要担心,因为你可以在以后重温它。我也建议你不要只专注于一个课程。我们学得都不一样,没关系。
我们学得都不一样,没关系。
不要一个人学习!寻找并加入能帮助你学习和成长的在线社区。我在以下文章中写过关于数据科学社区的文章:
您可以开始在Excel中练习机器学习。尝试在Excel中实现线性回归。这是一个很好的第一个挑战,它会让你有动力。
开始在Excel中练习机器学习。
让我们对房间里的大象讲话。如果您刚刚起步,我建议您学习Python。主要原因有:
使用Python,您可以进行分析,从头开发模型,然后在生产中运行它。虽然我确信R中的模型也在生产中运行,但我还没有听说过(如果您的经验不同,请在评论中告诉我)。
别误会,如果你知道R,那完全没问题。数据科学团队通常使用这两种语言,一些人喜欢R,另一些人喜欢Python。
最后,这并不重要,因为有些模型必须用编译语言(Java,Go)重新实现,以便在生产中做出更快的预测。
Python使您能够进行分析、从头开发模型并在生产中运行它。
这是个很棒的问题。答案是肯定的--用大写字母。
无论您是否使用SQL数据库,您都应该了解关系数据库中的主要概念,如joins、group by、window functions、lag、lead等。即使在使用pandas、R或其他工具时,这些概念也是必不可少的。
如果您感兴趣,我还写了几篇关于SQL的文章:
答案是肯定的--用大写字母。
你知道的数学越多,从长远来看对你越好。了解数学将使您能够理解黑匣子机器学习模型的幕后发生了什么。从理论到实践的知识转移也更容易。
有了数学,你就会明白黑匣子模型的幕后发生了什么。
当你需要改进模型时,数学就变得至关重要。您需要数学来理解不同类型的模型、发行版等之间的差异。
资深机器学习工程师只需看优化函数就能说出一个模型的主要性质。
当你试图改进模型时,数学变得至关重要。
我的建议是提前考虑。每个领域都需要一名数据科学家,或者将来也会需要。问问自己,完成学业后,你希望在哪家公司实习?如果你已经听过一些相关的课程,就更容易获得生物信息学的实习机会。
提前想想。
你不需要博士学位。从事数据科学工作--意味着对现实世界的数据进行分析,并应用机器学习模型。
如果你的目标是做研究和开发新的机器学习算法(例如,在Deep Mind工作),那么你应该攻读博士学位。
你不需要博士学位。从事数据科学工作,但是...
参加LocalMeetups。公司在那里寻找新雇员。也许从数据质量评估部门开始--大公司有这些。在线社区也能有所帮助。
参加当地的聚会。
最近,我写道,“当你有多个工作机会时,接受一个有更好导师的工作机会。”
你怎么知道哪家有最好的导师?在面试过程中尽可能多地了解团队成员、经理、他们的背景等信息。查看他们的LinkedIn。他们在Quora、StackOverflow、Medium上写吗?做你的研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25