京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章是为那些属于下列类别之一的人准备的:
你可能在想,“我有机会吗?”
答案是:“是的,有可能。”
好消息是,您已经通过了第一步,这就是您对数据科学感兴趣。现在这将不是一个容易的旅程,因为您是一个失败者,但要把它作为每天激励自己的燃料。
最重要的是,我要给你我的建议,我希望我在开始的时候有。
首先,介绍一下我自己…
我有商科学位,但从大学二年级开始,我就对机器学习感兴趣。因此,我自学了我今天所知道的大部分知识,我很幸运地在几个数据分析师/数据科学工作中工作。
我为什么要告诉你这些?我想说清楚,我曾经和你处于类似的位置!
请记住,这是一个长期目标,因此您应该期待长期的结果。如果你愿意付出100%的努力,我会给你至少一年的时间来决定是否继续下去。
说到这里,让我们潜入其中:
进入数据科学可以归结为两件事,增长和展示您的技能。
不久前,我写了一篇文章,“如果我可以重新开始,我将如何学习数据科学。”在这篇文章中,我将学习的内容按学科划分,即统计与数学、编程基础和机器学习。
在这篇文章中,我将根据你的理解水平来划分你应该学习的内容。
级别0:基本原理
你必须从基础开始,构建块,无论你想怎么称呼它。但是相信我,当我说这些的时候,你的基础越好,你的数据科学之旅就会越顺利。
特别是,我建议您在以下主题中建立基础知识:统计与概率、数学和编程。
统计和概率:如果你读过我以前的文章,那么你可能已经听过第一百万次了,但是数据科学家实际上只是一个现代统计学家。
数学:取决于你在高中时的注意力,这将决定你需要花多少时间学习基础数学。您应该学习以下三个方面:微积分、积分和线性代数:
编程:就像对数学和统计数据有一个基本的理解是很重要的一样,了解编程中的核心基础知识会使您的生活变得容易得多,尤其是在实现方面。因此,我建议您在深入研究机器学习算法之前,先花时间学习基本的SQL和Python。
级别1:专门化
一旦你学会了基础知识,你就准备好专门化了。在这一点上,你是否想专注于机器学习算法、深度学习、自然语言处理、计算机视觉等就取决于你了…
你可以专攻的东西还有那么多,所以在你做决定之前,请多探索一下!
第2级:练习
像其他任何事情一样,你必须练习你学到的东西,因为你失去了你不用的东西!以下是我推荐的3个资源,可以用来练习和改进你的技能。
学习数据科学是一回事,但人们通常忘记的是营销自己--你最终会想展示你学到的东西。如果您没有与数据科学相关的学位,这对您来说尤其重要。
一旦你完成了几个个人数据科学项目,下面是你展示它们和推销自己的几种方法:
您的简历
首先,利用你的简历展示你的数据科学项目。我建议创建一个名为“个人项目”的部分,在那里你可以列出你已经完成的两到三个项目。
同样,您也可以在LinkedIn上的“projects”部分添加这些项目。
GitHub存储库
如果您还没有创建Github存储库,我强烈建议您创建一个Github存储库。当我们讨论Github的主题时,学习Git将是一个好主意。在这里,您可以包含所有的数据科学项目,更重要的是,您可以与其他人共享您的代码以供查看。
如果你有一个Kaggle帐户,并在Kaggle上创建笔记本,这也是一个很好的选择。
一旦你有了一个活跃的Kaggle或Github账户,确保你的账户URL在你的简历、领英和网站上都有。
个人网站
说到网站,我强烈建议以网站的形式建立一个数据科学投资组合。HTML和CSS是非常简单的学习,这将是一个有趣的项目!如果你没有时间,像Squarespace这样的东西也会很好地工作。
中型博客
我有偏见,因为这对我来说很有效,但这并不意味着我不能推荐写博客!使用像Medium这样的平台,您可以编写项目演练,就像我的onWine Quality Prediction一样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27