
2020年3月,我接到一个电话,通知我将休假,直到另行通知--非正式地意味着我将得到学习的报酬。我知道我在休假期结束后被解雇的可能性很高,因为我没有积极工作的项目。
尽管我在工作中没有做太多关于数据的工作,但一想到不能做任何关于数据的有意义的工作,我就很困扰。尽管如此,我觉得我对下一步可能做什么的选择有限,因为我在工作中没有太多的实际经验。不要误解我,我一直在实习,但在我的时间里,我没有做任何事情来显著(甚至轻微)改善业务(至少在我看来是这样)。我处于一个非常低的位置,缺乏自信,怀疑自己的技能……对我来说,休假不能早点到来。
我做出的第一个具有变革性的决定是致力于成为一名面向未来的、不可抗拒的数据科学家。
当你承诺做某事时,一种来自内心的力量驱使着你。我每天醒来都在想我今天一定比昨天更好,这就是我的动力。然而,在这篇文章中,我将分享我在休假期间做的三件事,以确保我更接近我的目标。
当我解释机器学习中的理论概念时,我很舒服,但我不满意。
每当我在Kaggle上查看人们使用的解决方案时,我总是看到某种形式的提升、套袋或深度学习。提升和装袋,我有很好的理解,但深度学习对我来说是一个禁区。当我意识到这一点时,我决定报名参加Coursera的深度学习专业。
深度学习
从deeplearning.ai中学习深度学习。如果你想闯入人工智能(AI),这种专业化...
在本课程中,我学习了许多基本的深度学习架构和技术,以改进深度学习模型。
我在编程方面已经相当不错了,但每当我听到关于人们如何在这个领域建立职业生涯的播客时,有一件事总是让我感到突出。
推倒重来好获得深刻的理解!
我从来没有从头开始编写机器学习算法,这让我怀疑我是否真的知道发生了什么。
因此,我向自己提出了一个挑战,从头开始编写许多最流行的机器学习算法--对于那些长期关注我的帖子的人来说,你应该知道这是从头开始的算法系列。
算法从头开始-迈向数据科学
阅读《走向数据科学》中关于从头开始算法的写作。共享概念、想法和...的媒体出版物
此外,我认为提高我对关键数据科学框架的技能是很重要的,比如NumPy和Pandas,因此我还创建了Pytrix系列。
Pytrix系列-迈向数据科学
阅读《走向数据科学》中关于Pytrix系列的文章。共享概念、想法和代码的媒体出版物。
我决定把发帖的频率从每周一次增加到每周3次。这个变化迫使我做了两件重要的事情,我认为这对我的成长至关重要:
作为一名数据科学家,不断学习是必不可少的。我们都知道技术发展的有多快,所以要保持敏锐,我们必须磨利我们的斧头。然而,当你学习一个新的话题,意图将这些信息反哺给其他人时,尽管我没有做过这方面的研究,但我发现我以不同的方式吸收信息--我对我正在学习的东西进行更深入的思考,并试图在脑海中想象出来,这一切都有助于使学习成为一个无缝的过程。
最好的数据科学家并不是最聪明的。
软技能在大多数MOOCs都不教,你必须自己出去学习。
成为一名数据科学家的要求,例如知道如何编程、统计学、线性代数、微积分和其他关键的数据概念,往往会让有抱负的数据科学家消耗太多,以至于很容易忘记作为一名数据科学家最重要的部分……能够理解业务想要实现什么,然后使用数据来增加价值。
换句话说,一个好的数据科学家知道很多技术概念,但他们与伟大的数据科学家的区别在于,他们有能力接受一个技术概念,然后简化它,并以一种包容团队所有成员的方式交流它,而不管他们的技术水平如何。
“如果你不能简单地解释它,你就不够了解它”
在我个人看来,每一个数据科学家都是一个个人品牌。维基百科对Entrepreneurship的定义是价值的创造或提取-有效地说,这是作为一名数据科学家的本质。
人们通常只有当他们认为是时候让他们成为一个数据科学的角色时才开始联网,我认为这完全是胡说八道。
在你需要之前建立你的关系网。
在过去的8个月里,构建数据科学网络帮助我改进了5种方法:
协助
有些人在生活中走在你前面,我个人相信宇宙允许我们与这些人相遇,这样他们就可以引导你。让我们面对现实吧,在你的数据科学职业生涯中,你需要寻求帮助!
市场营销
一个强大的网络是一个伟大的试验场的想法。我在我的LinkedIn上进行了多次民意调查,这为我提供了即时反馈。此外,您还可以获得个人推荐。就目前情况来看,我从来没有申请过工作,因为我一直知道口碑的力量,我已经在许多领域利用它为我的优势--无论哪个领域。
向别人学习
你不可能知道数据科学中的所有东西(或者一般的生活),拥有不同的人脉会让你接触到新的东西。经验并不重要,如果你有一个良好的网络,你会学到一些新的东西。
交朋友
如果你问那些在我身边长大的人人工智能是什么,他们可能会用《黑镜》中的一些东西来回答。在这个领域没有朋友可能会很孤独,因为有时你会感到疲倦、没有动力,而你的非数据科学朋友可能无法理解你。与其他数据科学家建立联系会让你意识到你不是世界上唯一一个面临某种挑战的人,当我感到沮丧时,它肯定会让我重新振作起来。
人们知道您必须提供什么
把任何关系粘在一起的胶水都附着在每个人带到桌子上的东西的两边,就是这样。如果人们知道你是做什么的,把你介绍给别人就容易多了--这就是我在8月份获得自由职业的原因。
值得注意的一件关键事情是,我已经在这个领域有了很多接触,这是让我像现在这样进步的原因;我想说,我所做的改变我职业生涯轨迹的最重要的事情是承诺。承诺是一个长期的决定,每天提高自己只有在你的手中。对你的职业生涯负责,是发展你自己的开始。虽然我离我想要的数据科学职业生涯还很远,但我比昨天更近了,比8个月前更近了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12