京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学和机器学习可以以不同程度的效率和生产力进行实践。无论应用领域或专业,数据科学家--初学者或经验丰富的专业人员--都应努力提高他/她在典型数据科学任务的所有方面的效率,
这意味着执行所有这些任务,
让我们假设有人正在教授“生产性数据科学”课程或写一本关于它的书--使用Python作为语言框架。对这样一门课程或一本书的典型期望应该是什么?
本课程/书应该面向那些希望超越执行数据科学和机器学习任务的标准方式并利用Python数据科学生态系统的全部范围以获得更高生产力水平的人。
应该教读者如何在标准流程中寻找低效和瓶颈,以及如何跳出框框思考。
重复性数据科学任务的自动化是阅读本书的读者将培养的一个关键心态。在许多情况下,他们还将学习如何扩展现有的编码实践,以便在Python生态系统中已经存在但在任何标准数据科学中都没有教授的高级软件工具的帮助下高效率地处理更大的数据集。
这不应该是一个常规的Python烹饪书教学标准库,如Numpy或Pandas。
相反,它应该关注一些有用的技术,比如如何测量ML模型的内存占用和执行速度、质量测试数据科学管道、模块化应用程序开发的数据科学管道,等等。它还应该包括Python库,这些库非常适合于自动化和加速任何数据科学家的日常任务。
此外,它应该涉及帮助数据科学家处理大型复杂数据集的工具和包,而不是遵循标准的Python数据科学技术智慧。
为了把事情具体化,让我们总结一些学习和实践生产性数据科学需要掌握的具体技能。我也尝试着加入一些有代表性的文章的链接,作为每一项技能的参考。
虽然GPU和分布式计算的使用在学术界和企业界被广泛讨论用于核心AI/ML任务,但他们发现它们在常规数据科学和数据工程任务中的应用很少覆盖。然而,使用GPU进行常规的日常统计分析或其他数据科学任务将大大有助于成为众所周知的“高效数据科学家”。
例如,theRAPIDS软件库套件和Apis让您--一个普通的数据科学家(不一定是深度学习从业者)--可以选择和灵活地完全在GPU上执行端到端数据科学和分析管道。
即使使用一个普通的GPU,这些库在速度上也比普通的Python库有了显著的提高。当然,对于生产性数据科学工作流,我们应该尽可能地采用这些方法。
类似地,有极好的开源机会可以超越Python语言的单核特性的限制,在不偏离典型的数据科学家角色的情况下接受并行计算范例。
我们讨论了生产性数据科学工作流的实用程序和核心组件。我们想像一个关于这个主题的理想课程或书籍会给读者提供什么。我们提到了一些具体的例子,并说明了这些好处。在要掌握的技能的上下文中还提供了一些相关的资源。
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12