
数据科学和机器学习可以以不同程度的效率和生产力进行实践。无论应用领域或专业,数据科学家--初学者或经验丰富的专业人员--都应努力提高他/她在典型数据科学任务的所有方面的效率,
这意味着执行所有这些任务,
让我们假设有人正在教授“生产性数据科学”课程或写一本关于它的书--使用Python作为语言框架。对这样一门课程或一本书的典型期望应该是什么?
本课程/书应该面向那些希望超越执行数据科学和机器学习任务的标准方式并利用Python数据科学生态系统的全部范围以获得更高生产力水平的人。
应该教读者如何在标准流程中寻找低效和瓶颈,以及如何跳出框框思考。
重复性数据科学任务的自动化是阅读本书的读者将培养的一个关键心态。在许多情况下,他们还将学习如何扩展现有的编码实践,以便在Python生态系统中已经存在但在任何标准数据科学中都没有教授的高级软件工具的帮助下高效率地处理更大的数据集。
这不应该是一个常规的Python烹饪书教学标准库,如Numpy或Pandas。
相反,它应该关注一些有用的技术,比如如何测量ML模型的内存占用和执行速度、质量测试数据科学管道、模块化应用程序开发的数据科学管道,等等。它还应该包括Python库,这些库非常适合于自动化和加速任何数据科学家的日常任务。
此外,它应该涉及帮助数据科学家处理大型复杂数据集的工具和包,而不是遵循标准的Python数据科学技术智慧。
为了把事情具体化,让我们总结一些学习和实践生产性数据科学需要掌握的具体技能。我也尝试着加入一些有代表性的文章的链接,作为每一项技能的参考。
虽然GPU和分布式计算的使用在学术界和企业界被广泛讨论用于核心AI/ML任务,但他们发现它们在常规数据科学和数据工程任务中的应用很少覆盖。然而,使用GPU进行常规的日常统计分析或其他数据科学任务将大大有助于成为众所周知的“高效数据科学家”。
例如,theRAPIDS软件库套件和Apis让您--一个普通的数据科学家(不一定是深度学习从业者)--可以选择和灵活地完全在GPU上执行端到端数据科学和分析管道。
即使使用一个普通的GPU,这些库在速度上也比普通的Python库有了显著的提高。当然,对于生产性数据科学工作流,我们应该尽可能地采用这些方法。
类似地,有极好的开源机会可以超越Python语言的单核特性的限制,在不偏离典型的数据科学家角色的情况下接受并行计算范例。
我们讨论了生产性数据科学工作流的实用程序和核心组件。我们想像一个关于这个主题的理想课程或书籍会给读者提供什么。我们提到了一些具体的例子,并说明了这些好处。在要掌握的技能的上下文中还提供了一些相关的资源。
您可以查看作者的GitHub存储库以获取机器学习和数据科学方面的代码、思想和资源。如果你和我一样,对人工智能/机器学习/数据科学充满热情,请在LinkedIn上添加我或在Twitter上关注我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13