
在过去的五年里,当python编程成为潮流时,我一直在数据科学领域工作。当时,在2016年,神经网络和深度学习只是一些时髦的词。当时有一场关于谷歌自动驾驶汽车和强化学习的炒作。但是,大多数数据科学爱好者甚至不知道神经网络的工作。
2021年的今天,大多数公司都在采用数据科学战略,通过自动化不同的场景,用一名数据科学家取代几十名IT人员,从而获得更多收入,这些数据科学家可以使用各种自动化工具,如BluePrism、UI Path、Python和机器学习算法,自动化这些IT人员的任务。
这就是为什么我们大多数人都在努力学习python,机器学习,分析,深度学习。为什么?因为数据科学家在行业中有极好的价值。而且,在数据科学领域,人们的工作数据也有了很大的增长。
但是,你知道在今天,这些“自动化任务正在使用另一种自动化策略来自动化吗?”整个数据科学管道正在使用一个单一的工具来自动化。
在2019年,数据科学家过去需要花费数天时间进行数据收集、数据清洗、特征选择,但现在我们在市场上有很多工具可以在几分钟内完成这些工作。
另一方面,我们尝试了不同的机器学习库,如logistic回归、随机森林、boosting machines、朴素贝叶斯和其他数据科学库来建立更好的模型。
但是,今天,我们有像H2O、PyCaret和许多其他云提供商这样的工具,他们可以使用其他30-50个机器学习库的组合对相同的数据进行相同的模型选择,为您的数据提供最佳的机器学习算法,并且误差最小。
现在情况正在以快速的速度发生变化。而且,我们无论如何都在失去我们的价值,因为每个人都会相信这个工具,它尝试了20多个机器学习算法,结果比我们更准确,而我们只尝试了几个机器学习库,结果却不太准确。
到目前为止,我们已经讨论了一些自动化工具是如何在机器学习领域做得很好的。这些工具做得比我们好,因为我们使用的机器学习算法知识有限。相反,这些工具使用库的组合,通过自动化完整的EDA过程来获得更有效的结果,从而在更短的时间内提供最好的结果。
但是,在深度学习领域,我们比机器学习领域拥有更少的命令,并且处理能力有限。我们也有大量的工具在市场上。这些工具在拥有最好的处理器方面投入了大量资金。
当我们谈论深度学习时,它以处理非结构化数据而闻名。而且,95%的时间,我们在这里处理图像和测试数据。目标检测、图像分割、构建聊天机器人、情感分析、文档相似度都是著名的用例。
但是,处理这些用例需要了解不同的深度学习算法,如卷积神经网络、递归神经网络、U-Net、沙漏、YOLO,以及更多需要大量处理能力来处理更多数据以获得更高精度的模型。
这里的问题是,在2021年的今天,公司正在投资大量资金来自动化这些完整的管道工作流。而且,我们忙于理解基本的机器学习和深度学习模型,而不顾没有任何投资者我们买不起高端机器的事实。
每个公司都意识到了这一事实,所以五年后,当这些云支持的数据科学工具将变得更加高效,并能够在更短的时间内提供更好的准确性时,为什么公司会投资雇佣我们,而不购买这些工具的订阅?
当所有这些事情都将自动化时,您可能会考虑数据科学爱好者的未来。会有工作短缺还是会有更少的招聘?
好吧,当我们换位思考时,事情就变得容易了。诚然,公司将继续专注于机器学习的自动化工作流程。但是,请记住,没有一家公司愿意依赖于另一家公司的工作。
每个公司的目标是建立他们的产品,这样他们就可以建立自己的自动化系统,然后在市场上销售,以赚取更多的收入,而不是依赖他人。所以,是的,将需要数据科学家,他们可以帮助行业建立自动化系统,可以自动化机器学习和深度学习的任务。
最后,我们可以说,数据科学家的角色将是以优化的结果自动化流水线。因此,我们最终将机器学习工作流的流水线自动化,并让自动化决定数据中的最佳特征,并使用最佳策略的算法得到可能的最佳结果。
我们已经看到,在未来五年里,数据科学工作岗位将会短缺,因为公司将采用数据科学的自动化管道。但是,对能够自动化数据科学管道的数据科学家也将有很高的需求。
按照我的想法,要使这些管道自动化,我们首先需要理解机器学习算法,以建立一个更好的自动化系统,这最终将导致更多的工作。
嗯,你有什么想法?我很想听听你的。我希望你喜欢这篇文章。联系更多相关文章。我发表关于实时数据科学场景及其用例的文章。
谢谢你的阅读!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10