京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在过去的五年里,当python编程成为潮流时,我一直在数据科学领域工作。当时,在2016年,神经网络和深度学习只是一些时髦的词。当时有一场关于谷歌自动驾驶汽车和强化学习的炒作。但是,大多数数据科学爱好者甚至不知道神经网络的工作。
2021年的今天,大多数公司都在采用数据科学战略,通过自动化不同的场景,用一名数据科学家取代几十名IT人员,从而获得更多收入,这些数据科学家可以使用各种自动化工具,如BluePrism、UI Path、Python和机器学习算法,自动化这些IT人员的任务。
这就是为什么我们大多数人都在努力学习python,机器学习,分析,深度学习。为什么?因为数据科学家在行业中有极好的价值。而且,在数据科学领域,人们的工作数据也有了很大的增长。
但是,你知道在今天,这些“自动化任务正在使用另一种自动化策略来自动化吗?”整个数据科学管道正在使用一个单一的工具来自动化。
在2019年,数据科学家过去需要花费数天时间进行数据收集、数据清洗、特征选择,但现在我们在市场上有很多工具可以在几分钟内完成这些工作。
另一方面,我们尝试了不同的机器学习库,如logistic回归、随机森林、boosting machines、朴素贝叶斯和其他数据科学库来建立更好的模型。
但是,今天,我们有像H2O、PyCaret和许多其他云提供商这样的工具,他们可以使用其他30-50个机器学习库的组合对相同的数据进行相同的模型选择,为您的数据提供最佳的机器学习算法,并且误差最小。
现在情况正在以快速的速度发生变化。而且,我们无论如何都在失去我们的价值,因为每个人都会相信这个工具,它尝试了20多个机器学习算法,结果比我们更准确,而我们只尝试了几个机器学习库,结果却不太准确。
到目前为止,我们已经讨论了一些自动化工具是如何在机器学习领域做得很好的。这些工具做得比我们好,因为我们使用的机器学习算法知识有限。相反,这些工具使用库的组合,通过自动化完整的EDA过程来获得更有效的结果,从而在更短的时间内提供最好的结果。
但是,在深度学习领域,我们比机器学习领域拥有更少的命令,并且处理能力有限。我们也有大量的工具在市场上。这些工具在拥有最好的处理器方面投入了大量资金。
当我们谈论深度学习时,它以处理非结构化数据而闻名。而且,95%的时间,我们在这里处理图像和测试数据。目标检测、图像分割、构建聊天机器人、情感分析、文档相似度都是著名的用例。
但是,处理这些用例需要了解不同的深度学习算法,如卷积神经网络、递归神经网络、U-Net、沙漏、YOLO,以及更多需要大量处理能力来处理更多数据以获得更高精度的模型。
这里的问题是,在2021年的今天,公司正在投资大量资金来自动化这些完整的管道工作流。而且,我们忙于理解基本的机器学习和深度学习模型,而不顾没有任何投资者我们买不起高端机器的事实。
每个公司都意识到了这一事实,所以五年后,当这些云支持的数据科学工具将变得更加高效,并能够在更短的时间内提供更好的准确性时,为什么公司会投资雇佣我们,而不购买这些工具的订阅?
当所有这些事情都将自动化时,您可能会考虑数据科学爱好者的未来。会有工作短缺还是会有更少的招聘?
好吧,当我们换位思考时,事情就变得容易了。诚然,公司将继续专注于机器学习的自动化工作流程。但是,请记住,没有一家公司愿意依赖于另一家公司的工作。
每个公司的目标是建立他们的产品,这样他们就可以建立自己的自动化系统,然后在市场上销售,以赚取更多的收入,而不是依赖他人。所以,是的,将需要数据科学家,他们可以帮助行业建立自动化系统,可以自动化机器学习和深度学习的任务。
最后,我们可以说,数据科学家的角色将是以优化的结果自动化流水线。因此,我们最终将机器学习工作流的流水线自动化,并让自动化决定数据中的最佳特征,并使用最佳策略的算法得到可能的最佳结果。
我们已经看到,在未来五年里,数据科学工作岗位将会短缺,因为公司将采用数据科学的自动化管道。但是,对能够自动化数据科学管道的数据科学家也将有很高的需求。
按照我的想法,要使这些管道自动化,我们首先需要理解机器学习算法,以建立一个更好的自动化系统,这最终将导致更多的工作。
嗯,你有什么想法?我很想听听你的。我希望你喜欢这篇文章。联系更多相关文章。我发表关于实时数据科学场景及其用例的文章。
谢谢你的阅读!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07