
我只想在前言中说,这篇文章更多地反映了我是如何走到今天的。我并不是说你会通过遵循同样的步骤来实现同样的事情,但我认为这可能会为你提供一个独特的视角,这是你以前可能没有想过的。
说到这里,让我们深入研究一下吧!
为了让我的收入翻一番,我主要做了三件事:
今天,许多人倾向于像比特币这样的高风险、高回报投资,试图“快速致富”,但正如沃伦·巴菲特所说,你能做的最好的投资是在自己身上。对于那些没有钱投资但又想改善财务状况的人来说尤其如此。
通过简单地提高自己的技能,学习数据科学和机器学习,我在一年内将工资提高了40%。
在过去的一年里,我主要关注三个领域:
数据操作(SQL/Pandas)
在我看来,使用SQL和Pandas进行数据操作是最重要的领域,给我带来了最大的好处。从我的经验来看,最多的时间花在查询数据、探索数据和争论数据上,所有这些都需要SQL和Pandas。在我所有与数据相关的工作中(增长营销分析师、数据分析师、数据科学家),SQL一直是一个共同的标准,可以说是数据专业人员最重要的技能。
以下是我用来自学SQL和Pandas的资源:
脚本(Python)
我开始使用Python是因为学校的原因,我可能会在我的余生中坚持使用Python。它在开源贡献方面遥遥领先,而且学习起来很简单。
我强烈推荐以下两个主要资源来开发您的Python技能(除了做辅助项目之外):
但是当然,不学习机器学习,做一个数据科学家是多么有趣啊!下面是我在职业生涯开始时使用的两个最重要的资源。
如果你想了解各种机器学习算法,请查看我在这里的文章。
我实际上写了一个为期52周的课程,包括SQL、Pandas、Python和机器学习,你可以在这里查看。
既然我已经介绍了我在哪些方面提高了自己的技能,您可能想知道我是如何做到这一点的,这就是我接下来要讨论的内容。
你们中的一些人可能知道,我发起了一个名为“数据科学和机器学习52周”的个人倡议,在那里,我每周学习、编码和写一些与数据科学和机器学习有关的东西,持续了整整一年。这主要是为了让我能够在持续的基础上保持自己学习新东西的责任感。
在写了100多篇文章,建立了2万多名读者的追随者基础后,写作现在占了我总收入的25%左右。
以下是三个让我获得成功的秘诀:
提示#1:找到你擅长写的东西、你喜欢写的东西和人们喜欢读的东西之间的交集。
这是我总是给有抱负的作家的第一个提示。理想情况下,你想找到一个利基,满足所有这三个东西。
如果你发现了一些你擅长写的东西,你也喜欢写它,但人们不喜欢读它,那么你就不会建立一个追随者基础(假设你关心这一点)。
如果你发现了一个你擅长写的话题,人们喜欢读它,但你不喜欢写它,那么你就不会持续太久,因为你会失去兴趣。
最后,如果你发现了一个你喜欢写的话题,人们也喜欢读它,但你不擅长写它(例如,因为你没有足够的专业知识),那么你可能不会得到任何吸引力。
所以,在你旅程的开始,找出你的利基。我将在技巧3中详细说明这一点。
技巧#2:理解您正在编写的平台的机制。
无论您是使用Medium、Substack、Patreon还是其他博客平台,请确保您花时间了解该平台是如何工作的。
我不能说太多细节,但理解收入是计算出来的,平台如何帮助你自己做广告,诸如此类的事情是需要考虑的重要事情。
通过了解媒体的机制和它是如何工作的,我能够最大限度地扩大我的外联,最终更快地增长我的追随者基础。
下一个技巧将帮助您实现技巧1和2:
提示#3:在创建内容时考虑“利用vs.探索”的概念。
为了找到技巧1中这三个方面的交叉点,并理解您正在编写的平台的机制,请考虑开发vs.探索的概念。
这个想法来自一个名为“多臂强盗问题”的统计问题。我不想太详细,但“探索和利用”背后的主要思想是决定是探索并发现新的潜在想法,还是利用您已经知道的有效想法。
在你写作/写博客生涯的开始,探索和尝试尽可能多的想法,看看什么最适合你,这是你最感兴趣的。这意味着写不同的主题,在不同的出版物上发表,并可能尝试新的写作风格。
随着你在写作风格和偏好上的发展,你可能会偶然发现一个“食谱”,让你在写作中取得持续的成功。这时你可以开始利用这个突破,在你的秘密公式上加倍努力。
总而言之,在你的旅程的早期尽可能多地探索,当你开始定义自己并找到成功时,开始利用那些让你成功的洞察力和想法。
我剩下的一点收入来自与数据科学和机器学习相关的自由职业项目。我从事的项目包括撰写技术论文、撰写营销内容和建立模型。
当我刚开始工作时,我只从自由职业项目中获得最低工资。这是有道理的,因为我没有太多的经验,我也不知道我值多少钱。然而,到了年底,我可以每小时收取50美元以上的费用。
我的大部分收入来自科技行业的老客户。事实上,我也不必接触其他人--我可以通过我的数据科学和机器学习博客来吸引客户的注意力,我认为这是本文的重点。
我的数据科学和机器学习博客不仅帮助我在一致的基础上学习,还帮助我建立了自己的追随者基础,并帮助我获得了几个自由职业客户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08