
我只想在前言中说,这篇文章更多地反映了我是如何走到今天的。我并不是说你会通过遵循同样的步骤来实现同样的事情,但我认为这可能会为你提供一个独特的视角,这是你以前可能没有想过的。
说到这里,让我们深入研究一下吧!
为了让我的收入翻一番,我主要做了三件事:
今天,许多人倾向于像比特币这样的高风险、高回报投资,试图“快速致富”,但正如沃伦·巴菲特所说,你能做的最好的投资是在自己身上。对于那些没有钱投资但又想改善财务状况的人来说尤其如此。
通过简单地提高自己的技能,学习数据科学和机器学习,我在一年内将工资提高了40%。
在过去的一年里,我主要关注三个领域:
数据操作(SQL/Pandas)
在我看来,使用SQL和Pandas进行数据操作是最重要的领域,给我带来了最大的好处。从我的经验来看,最多的时间花在查询数据、探索数据和争论数据上,所有这些都需要SQL和Pandas。在我所有与数据相关的工作中(增长营销分析师、数据分析师、数据科学家),SQL一直是一个共同的标准,可以说是数据专业人员最重要的技能。
以下是我用来自学SQL和Pandas的资源:
脚本(Python)
我开始使用Python是因为学校的原因,我可能会在我的余生中坚持使用Python。它在开源贡献方面遥遥领先,而且学习起来很简单。
我强烈推荐以下两个主要资源来开发您的Python技能(除了做辅助项目之外):
但是当然,不学习机器学习,做一个数据科学家是多么有趣啊!下面是我在职业生涯开始时使用的两个最重要的资源。
如果你想了解各种机器学习算法,请查看我在这里的文章。
我实际上写了一个为期52周的课程,包括SQL、Pandas、Python和机器学习,你可以在这里查看。
既然我已经介绍了我在哪些方面提高了自己的技能,您可能想知道我是如何做到这一点的,这就是我接下来要讨论的内容。
你们中的一些人可能知道,我发起了一个名为“数据科学和机器学习52周”的个人倡议,在那里,我每周学习、编码和写一些与数据科学和机器学习有关的东西,持续了整整一年。这主要是为了让我能够在持续的基础上保持自己学习新东西的责任感。
在写了100多篇文章,建立了2万多名读者的追随者基础后,写作现在占了我总收入的25%左右。
以下是三个让我获得成功的秘诀:
提示#1:找到你擅长写的东西、你喜欢写的东西和人们喜欢读的东西之间的交集。
这是我总是给有抱负的作家的第一个提示。理想情况下,你想找到一个利基,满足所有这三个东西。
如果你发现了一些你擅长写的东西,你也喜欢写它,但人们不喜欢读它,那么你就不会建立一个追随者基础(假设你关心这一点)。
如果你发现了一个你擅长写的话题,人们喜欢读它,但你不喜欢写它,那么你就不会持续太久,因为你会失去兴趣。
最后,如果你发现了一个你喜欢写的话题,人们也喜欢读它,但你不擅长写它(例如,因为你没有足够的专业知识),那么你可能不会得到任何吸引力。
所以,在你旅程的开始,找出你的利基。我将在技巧3中详细说明这一点。
技巧#2:理解您正在编写的平台的机制。
无论您是使用Medium、Substack、Patreon还是其他博客平台,请确保您花时间了解该平台是如何工作的。
我不能说太多细节,但理解收入是计算出来的,平台如何帮助你自己做广告,诸如此类的事情是需要考虑的重要事情。
通过了解媒体的机制和它是如何工作的,我能够最大限度地扩大我的外联,最终更快地增长我的追随者基础。
下一个技巧将帮助您实现技巧1和2:
提示#3:在创建内容时考虑“利用vs.探索”的概念。
为了找到技巧1中这三个方面的交叉点,并理解您正在编写的平台的机制,请考虑开发vs.探索的概念。
这个想法来自一个名为“多臂强盗问题”的统计问题。我不想太详细,但“探索和利用”背后的主要思想是决定是探索并发现新的潜在想法,还是利用您已经知道的有效想法。
在你写作/写博客生涯的开始,探索和尝试尽可能多的想法,看看什么最适合你,这是你最感兴趣的。这意味着写不同的主题,在不同的出版物上发表,并可能尝试新的写作风格。
随着你在写作风格和偏好上的发展,你可能会偶然发现一个“食谱”,让你在写作中取得持续的成功。这时你可以开始利用这个突破,在你的秘密公式上加倍努力。
总而言之,在你的旅程的早期尽可能多地探索,当你开始定义自己并找到成功时,开始利用那些让你成功的洞察力和想法。
我剩下的一点收入来自与数据科学和机器学习相关的自由职业项目。我从事的项目包括撰写技术论文、撰写营销内容和建立模型。
当我刚开始工作时,我只从自由职业项目中获得最低工资。这是有道理的,因为我没有太多的经验,我也不知道我值多少钱。然而,到了年底,我可以每小时收取50美元以上的费用。
我的大部分收入来自科技行业的老客户。事实上,我也不必接触其他人--我可以通过我的数据科学和机器学习博客来吸引客户的注意力,我认为这是本文的重点。
我的数据科学和机器学习博客不仅帮助我在一致的基础上学习,还帮助我建立了自己的追随者基础,并帮助我获得了几个自由职业客户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26