京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网络安全顾问斯特凡·马拉杰。
作为数据科学家,我们有时会有点过于…科学地看待事物。虽然数据科学家的核心技能与以往基本相同--统计学、数学和逻辑学--但总有新的技能出现。有时,这些与计算机编程的新范式或新的统计技术有关。
在今天的商业环境中,对于数据科学家来说,这些新兴技能中最重要的是软技能。尽管老派程序员告诉你什么,但事实是,今天没有人,包括数据科学家,可以忽视这些技能。它们不仅使团队合作更加有效,而且还能促进你的职业生涯。
在本文中,我们将带您了解数据科学家的五种最重要的软技能,并向您展示如何开发它们。
首先,如果你仍然对发展这些技能的必要性持怀疑态度,让我们来看看数据。谷歌最近的一项研究对几家大公司的员工进行了调查,试图评估最有生产力、最有创新精神的员工所拥有的技能。
结果可能会令人惊讶。创新不是由拥有最高技术水平的员工推动的,而是那些参与跨学科小组的最具生产力和创造性的工作人员。在这些群体中,那些拥有高度发展的软技能的人能够推动变革,更有可能升到管理职位。
当然,你所需要的技能类型取决于你的工作方式和工作重点。尽管如此,有一些技能对几乎每一个数据科学角色都是至关重要的。它们在这里:
作为一名数据科学家,你很可能已经为自己有能力向普通观众传达复杂的想法和数据分析而自豪。然而,有一个理由可以在你的角色的技术要求之外分享你的技能和专业知识。积极主动地接触你的客户和经理,不仅可以改善这些关系,甚至可以促进你的职业生涯。
能够对一屋子的科学家整理、分析和反刍大量与主题相关的数据是一回事,但能够将其本质传达给那些可能帮助你实现向上发展的职业抱负的人是另一回事。
假设有一天你在午餐室碰见了公司的CEO。她开心地在手机上冲浪,谷歌这个,那个,还有其他一切。由于IT部门每天都在向你灌输网络安全的想法,你不经意间提到使用世界上最受欢迎的搜索引擎是一个糟糕的想法,除非你喜欢跟踪和存储你的每一次在线活动。谈话接踵而至。首席执行官对你的精明和帮助的意愿印象深刻。下一次,当她参加董事会会议时,高管团队正在审查该提升哪名员工,该将哪名员工调往西伯利亚时,你的名字在她的记忆中浮现为一个乐于助人的家伙。
你得到了很大的加薪和一个带窗户的角落办公室。这一切都是因为您能够超越硬数据科学技能的限制,并以人类的身份进行联系。
有效、清晰、及时的决策是一项至关重要的业务技能。然而,它经常被数据科学家忽视。这可能会给公司带来重大问题,因为数据科学家可能会发现自己处于高级职位(参见上面的午餐故事),而没有必要的技能和知识来做出管理或商业决策。
然而,这并不是一项很难获得的技能。定期回顾当前和即将到来的行业趋势对于提高你的管理水平是非常有价值的,并且(再次)表明你渴望更多的责任。
批判性思维比这份清单上的其他一些软技能更难定义--事实上,这就是为什么一些文科专业的学生花了几年时间在大学里磨练这种技能。作为科学家,我们工作的方法似乎很少给批判性和创造性留下空间。这与事实正好相反。
最终,批判性思维允许你做两件事。一个是有效地过滤我们现在被轰炸的信息海啸。在前八大平台上有超过90亿的社交媒体用户,谁能跟上呢?没错。没人。
快速扫描和过滤信息的能力可能是你职业生涯中与众不同的因素。与批判性思维相关的另一个关键软技能是能够在动态中重新构建和修改数据分析,以便识别和解决手头的真正问题。
尽管数据分析似乎是一项孤独的任务,但现实是团队工作对组织来说一直很重要。这在一定程度上是由于我上面提到的研究,它强调了多学科团队在推动创新方面的价值。
如果你不是一个善于与人相处的人,也不具备与可能不分享你的专业知识或世界观的同事一起工作所必需的软技能,那么在这些环境中工作可能会带来压力。与同事建立专业关系的能力至关重要。
最后但绝对不是最不重要的是研究技能。数据科学的世界和那些在其中工作的人的角色正在快速变化。正因为如此,一个最重要的技能培养是进一步你自己的教育。
技术专业继续教育的重要性正逐渐被雇主所认识。如果你能及时了解这个领域的新技术、新问题和新工具,你就会期待更多更好的工作机会。
我们刚才讨论的软技能不仅是高效和胜任工作的必要条件,而且也受到雇主的高度追捧。成功的软技能发展可能是在未来工作场所获得成功的关键。伴随着更多的协作工作而来的是新的挑战。确定哪些技能是你需要加强的,现在就开始制定一个改进计划。
生物:斯特凡·马拉杰几乎是一名会计师,但现在对网络安全的了解超过了收入确认原则。20年后,他是一名网络安全顾问,为黑客的大脑提供洞察力,以找出他们到底在实施什么样的计算机渎职行为以及如何阻止它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27