
我只想说,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。然而,如果你坐在篱笆上,不确定该选择哪一个,因为他们是同样感兴趣的,那么继续阅读!
数据科学一时成为热门话题,但一个新的丛林之王已经到来--数据工程师。在本文中,我将与您分享几个原因,为什么您可能希望考虑使用数据工程而不是数据科学。
请注意,这是一篇固执己见的文章,并从中获取您想要的内容。话虽如此,我希望你喜欢!
我们都听过“垃圾进,垃圾出”这句话,但直到现在,公司才开始真正理解这句话的含义。机器学习和深度学习可能是强大的,但只有在非常特殊的情况下。除了需要大量的数据和ML和DL的实际使用之外,公司还需要自下而上地满足数据需求层次结构。
就像我们在社交需求(即关系需求)之前有物理需求(即食物和水)一样,公司需要满足几个通常属于数据工程伞的需求。请注意数据科学,特别是机器学习和深度学习,是最重要的东西。
简单地说,没有数据工程就没有数据科学。数据工程是一个成功的数据驱动公司的基础。
正如我之前所说的,公司正在意识到对数据工程师的需求。因此,目前对数据工程师的需求越来越大,这是有证据的。
根据ToIntegrated Query的数据科学面试报告,2019年至2020年,数据科学面试数量仅增长了10%,而同期数据工程面试数量增长了40%!
此外,Mihail Eric对Y-Combinator的职位发布进行了一项分析,发现的数据工程角色比的数据科学家角色多70%。
你可能会想,“当然增长要高得多,但就绝对数字而言呢?”
我冒昧地从Indeuts、Monster和SimplyHired上搜索了所有数据科学家和数据工程师的职位,发现这两个职位列表的数量都差不多!
总共有16577份数据科学家工作清单和16262份数据工程师工作清单。
在更成熟的公司中,工作通常是分开的,这样数据科学家可以专注于数据科学工作,而数据工程师可以专注于数据工程工作。
但大多数公司通常不是这样。我想说,大多数公司实际上都要求他们的数据科学家了解一些数据工程技能。
许多数据科学家最终需要数据工程技能。
作为一名数据科学家,了解数据工程技能也是非常有益的,我将举一个例子:如果您是一名不懂SQL的业务分析师,那么每次想要收集见解时,您都必须要求数据分析师查询信息,这在您的工作流程中造成了瓶颈。类似地,如果您是一名数据科学家,没有数据工程师的基本知识,那么您肯定会不得不依赖其他人来修复ETL管道或清理数据,而不是自己完成。
在我看来,作为一名数据工程师学习数据科学比作为一名数据科学家学习数据工程技能容易得多。为什么?数据科学有更多的可用资源,有许多工具和库被构建来使数据科学变得更容易。
因此,如果你正在开始你的职业生涯,我个人认为花时间学习数据工程比数据科学更值得,因为你有更多的时间可以投入。当你从事一份全职工作,进入职业生涯几年后,你可能会发现你没有能力或精力在学习上投入那么多时间。所以从这个角度来看,我认为最好先学比较难的领域。
我不只是在谈论工作机会,而是通过新的工具和方法来创新和使数据工程变得更容易的机会。
当数据科学最初被大肆宣传时,人们发现了学习数据科学的几个障碍,比如数据建模和模型部署。后来出现了像PyCaret和Gradio这样的公司来解决这些问题。
目前,我们正处于数据工程的初始阶段,我预见到许多使数据工程变得更容易的机会。
虽然这是一篇固执己见的文章,但我希望这能让您了解为什么想成为一名数据工程师。我想重申,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。我一如既往地祝你在你的努力中好运!
不知道接下来要读什么?我为您挑选了另一篇文章:
4个你不应该成为数据科学家的理由
为什么数据科学工作不适合你
和另一个!
想成为一名数据科学家吗?不要从机器学习开始。
有抱负的数据科学家最大的误解
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17