
我只想说,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。然而,如果你坐在篱笆上,不确定该选择哪一个,因为他们是同样感兴趣的,那么继续阅读!
数据科学一时成为热门话题,但一个新的丛林之王已经到来--数据工程师。在本文中,我将与您分享几个原因,为什么您可能希望考虑使用数据工程而不是数据科学。
请注意,这是一篇固执己见的文章,并从中获取您想要的内容。话虽如此,我希望你喜欢!
我们都听过“垃圾进,垃圾出”这句话,但直到现在,公司才开始真正理解这句话的含义。机器学习和深度学习可能是强大的,但只有在非常特殊的情况下。除了需要大量的数据和ML和DL的实际使用之外,公司还需要自下而上地满足数据需求层次结构。
就像我们在社交需求(即关系需求)之前有物理需求(即食物和水)一样,公司需要满足几个通常属于数据工程伞的需求。请注意数据科学,特别是机器学习和深度学习,是最重要的东西。
简单地说,没有数据工程就没有数据科学。数据工程是一个成功的数据驱动公司的基础。
正如我之前所说的,公司正在意识到对数据工程师的需求。因此,目前对数据工程师的需求越来越大,这是有证据的。
根据ToIntegrated Query的数据科学面试报告,2019年至2020年,数据科学面试数量仅增长了10%,而同期数据工程面试数量增长了40%!
此外,Mihail Eric对Y-Combinator的职位发布进行了一项分析,发现的数据工程角色比的数据科学家角色多70%。
你可能会想,“当然增长要高得多,但就绝对数字而言呢?”
我冒昧地从Indeuts、Monster和SimplyHired上搜索了所有数据科学家和数据工程师的职位,发现这两个职位列表的数量都差不多!
总共有16577份数据科学家工作清单和16262份数据工程师工作清单。
在更成熟的公司中,工作通常是分开的,这样数据科学家可以专注于数据科学工作,而数据工程师可以专注于数据工程工作。
但大多数公司通常不是这样。我想说,大多数公司实际上都要求他们的数据科学家了解一些数据工程技能。
许多数据科学家最终需要数据工程技能。
作为一名数据科学家,了解数据工程技能也是非常有益的,我将举一个例子:如果您是一名不懂SQL的业务分析师,那么每次想要收集见解时,您都必须要求数据分析师查询信息,这在您的工作流程中造成了瓶颈。类似地,如果您是一名数据科学家,没有数据工程师的基本知识,那么您肯定会不得不依赖其他人来修复ETL管道或清理数据,而不是自己完成。
在我看来,作为一名数据工程师学习数据科学比作为一名数据科学家学习数据工程技能容易得多。为什么?数据科学有更多的可用资源,有许多工具和库被构建来使数据科学变得更容易。
因此,如果你正在开始你的职业生涯,我个人认为花时间学习数据工程比数据科学更值得,因为你有更多的时间可以投入。当你从事一份全职工作,进入职业生涯几年后,你可能会发现你没有能力或精力在学习上投入那么多时间。所以从这个角度来看,我认为最好先学比较难的领域。
我不只是在谈论工作机会,而是通过新的工具和方法来创新和使数据工程变得更容易的机会。
当数据科学最初被大肆宣传时,人们发现了学习数据科学的几个障碍,比如数据建模和模型部署。后来出现了像PyCaret和Gradio这样的公司来解决这些问题。
目前,我们正处于数据工程的初始阶段,我预见到许多使数据工程变得更容易的机会。
虽然这是一篇固执己见的文章,但我希望这能让您了解为什么想成为一名数据工程师。我想重申,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。我一如既往地祝你在你的努力中好运!
不知道接下来要读什么?我为您挑选了另一篇文章:
4个你不应该成为数据科学家的理由
为什么数据科学工作不适合你
和另一个!
想成为一名数据科学家吗?不要从机器学习开始。
有抱负的数据科学家最大的误解
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04