京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我只想说,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。然而,如果你坐在篱笆上,不确定该选择哪一个,因为他们是同样感兴趣的,那么继续阅读!
数据科学一时成为热门话题,但一个新的丛林之王已经到来--数据工程师。在本文中,我将与您分享几个原因,为什么您可能希望考虑使用数据工程而不是数据科学。
请注意,这是一篇固执己见的文章,并从中获取您想要的内容。话虽如此,我希望你喜欢!
我们都听过“垃圾进,垃圾出”这句话,但直到现在,公司才开始真正理解这句话的含义。机器学习和深度学习可能是强大的,但只有在非常特殊的情况下。除了需要大量的数据和ML和DL的实际使用之外,公司还需要自下而上地满足数据需求层次结构。
就像我们在社交需求(即关系需求)之前有物理需求(即食物和水)一样,公司需要满足几个通常属于数据工程伞的需求。请注意数据科学,特别是机器学习和深度学习,是最重要的东西。
简单地说,没有数据工程就没有数据科学。数据工程是一个成功的数据驱动公司的基础。
正如我之前所说的,公司正在意识到对数据工程师的需求。因此,目前对数据工程师的需求越来越大,这是有证据的。
根据ToIntegrated Query的数据科学面试报告,2019年至2020年,数据科学面试数量仅增长了10%,而同期数据工程面试数量增长了40%!
此外,Mihail Eric对Y-Combinator的职位发布进行了一项分析,发现的数据工程角色比的数据科学家角色多70%。
你可能会想,“当然增长要高得多,但就绝对数字而言呢?”
我冒昧地从Indeuts、Monster和SimplyHired上搜索了所有数据科学家和数据工程师的职位,发现这两个职位列表的数量都差不多!
总共有16577份数据科学家工作清单和16262份数据工程师工作清单。
在更成熟的公司中,工作通常是分开的,这样数据科学家可以专注于数据科学工作,而数据工程师可以专注于数据工程工作。
但大多数公司通常不是这样。我想说,大多数公司实际上都要求他们的数据科学家了解一些数据工程技能。
许多数据科学家最终需要数据工程技能。
作为一名数据科学家,了解数据工程技能也是非常有益的,我将举一个例子:如果您是一名不懂SQL的业务分析师,那么每次想要收集见解时,您都必须要求数据分析师查询信息,这在您的工作流程中造成了瓶颈。类似地,如果您是一名数据科学家,没有数据工程师的基本知识,那么您肯定会不得不依赖其他人来修复ETL管道或清理数据,而不是自己完成。
在我看来,作为一名数据工程师学习数据科学比作为一名数据科学家学习数据工程技能容易得多。为什么?数据科学有更多的可用资源,有许多工具和库被构建来使数据科学变得更容易。
因此,如果你正在开始你的职业生涯,我个人认为花时间学习数据工程比数据科学更值得,因为你有更多的时间可以投入。当你从事一份全职工作,进入职业生涯几年后,你可能会发现你没有能力或精力在学习上投入那么多时间。所以从这个角度来看,我认为最好先学比较难的领域。
我不只是在谈论工作机会,而是通过新的工具和方法来创新和使数据工程变得更容易的机会。
当数据科学最初被大肆宣传时,人们发现了学习数据科学的几个障碍,比如数据建模和模型部署。后来出现了像PyCaret和Gradio这样的公司来解决这些问题。
目前,我们正处于数据工程的初始阶段,我预见到许多使数据工程变得更容易的机会。
虽然这是一篇固执己见的文章,但我希望这能让您了解为什么想成为一名数据工程师。我想重申,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。我一如既往地祝你在你的努力中好运!
不知道接下来要读什么?我为您挑选了另一篇文章:
4个你不应该成为数据科学家的理由
为什么数据科学工作不适合你
和另一个!
想成为一名数据科学家吗?不要从机器学习开始。
有抱负的数据科学家最大的误解
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06