
如果我们能说我们什么都知道,我们都会喜欢的。不幸的是,这是不可能的。有时我会告诉自己“我什么都不知道”,以此来推动自己学习,不断提高。
数据科学是那些需要不断学习的领域之一,并且总是有改进的空间。在数据科学的世界里,很难保持在事情的顶端并感到成就感。一旦你学完了一件事,并对它感到自信,你就会发现自己在寻找新的主题或领域去学习。
没人能坐在这里说他们什么都知道。你有资深的数据科学家,他们在这个领域工作了10年以上,仍然需要谷歌如何加入两个数据集。这并不意味着他们不知道它,他们可能只是在一段时间内没有使用该代码,他们已经忘记了。
一旦您开始在数据科学领域工作,您将与其他数据科学家、分析师、机器学习工程师以及更多的相互交流知识。然而,你可能不知道你的同事做的事情,反之亦然。然而,在你不知道的情况下告诉你的同事你知道一些事情,有时会损害你的信心。
如果手头的任务你不知道做可以简单地用谷歌,看一个YouTube视频,或看看堆栈溢出解决,那就太好了。但是,如果你继续不停地告诉你的同事或老板你知道一些事情,而你不知道;你会发现自己淹没在额外的学习中。相反,你可以说“对不起,但我不知道怎么做”。这样,你的同事和老板就会了解你的优势和劣势,为你提供正确的支持/培训,以便你在特定的领域有所提高。
这也适用于担任高级职务的人。如果你没有正确的技能来管理和指导一个团队,你会不知所措,压力水平会增加,这可能会让你考虑你的位置。
你的第一份工作总是让人害怕。说出自己的观点你会感到焦虑和紧张。我将介绍几点,我认为每个人都应该融入他们的工作和个人生活。
你不必事事出类拔萃。然而,要从事数据科学,你需要基本的技能。如果你是一名数据科学家,喜欢数据争论,创建数据可视化,但在构建机器学习模型方面几乎没有经验;这是你的一个弱点,你可以努力解决。向自己承认,你不会在数据科学家手中的每一项技能上都取得进步,这是成长为数据科学家的第一步。
一旦你确定了自己的长处和短处,你喜欢什么,不知道什么;你可以缩小自我发展的范围。如果你对成为机器学习工程师特别感兴趣,你作为数据科学家的技能将派上用场。然而,您需要研究诸如算法、自然语言处理、神经网络等学习领域。
你需要了解哪些技能对你的职业生涯是有益的,目前或将来。如果你的职业规划要求你使用Python和R作为编程语言,那么学习另一种语言如HTML就没有用了。你不会想做什么都是菜鸟,什么都不是高手。
如果你不问,你就得不到。数据科学家的角色需要大量的技术技能,以及软技能。这是不幸的,但许多人会认为你会知道如何做几乎所有的事情,因为你申请了一个特定的角色。我们已经知道,事实并非如此。总是有改进的空间和学习不同技能的时间。
如果工作中的一个项目有一个严格的最后期限,你被要求完成一个特定的任务来快速跟踪这个过程,然而,你不知道如何处理它,因为你不具备这些技能。你会发现自己陷入困境。从长远来看,直言不讳地告诉你的同事你能做什么和不能做什么,而不是感到紧张和羞耻,会拯救你。你可能会被分配另一项任务,其他团队成员都知道你很乐意做,以确保每个人都能在最后期限前完成。
与你的前辈谈论你的弱点,开启了一场关于自我发展的对话。公司可能希望你在这些方面有所改进,并让你接受特定的培训,或者在工作时间为你分配自我发展时间来支持你。如果一家公司能帮助你成为最好的数据科学家之一,他们会的。
另一方面,你可能会觉得分配给你的任务低于你的技能。重要的是,不要把一天的时间花在做一些简单的事情上,而这些事情对你在另一个领域有好处。这是爬上梯子最简单的方法。和你的上司谈谈你的优势,以及他们如何提高公司的效率,可以解决许多业务问题。这是一个双赢的局面。
申请合适的工作
众所周知,人们申请需要特定技能的空缺职位,但自己并不具备这些技能。如果你这样做,你就会失败。与其根据薪水来申请工作,不如根据你目前的技能来申请。
做一份入门级的工作,培养你的技能,然后从那里开始努力,并没有什么坏处。谦卑自己,量入为出是建立职业生涯的第一步。关键字是'building'。它不会交给你,所以你必须从某个地方开始。宁可从头开始工作,也不要从头上摔下来。
在线课程
有各种各样的在线课程,你可以参加,以提高和增加你的技能。您可以通过Udemy、Coursera、Udacity等学习课程。他们可以学习特定的编程语言,如Python或C++,或者理解数据库管理和SQL。
阅读
网上有很多阅读材料可以帮助你提高对各种主题的理解。教科书,学术论文在网上以及KDNuggets等平台上都可以获得,为您提供优质的资源材料来指导,帮助您理解和建立您的职业生涯。
持续学习是你的自我激励和坚持不懈的方式,以扩大你的技能和发展未来的机会,无论是个人还是专业。你可以决定有一天你对医学感兴趣,并想在该领域结合你的数据科学技能。或者,您可能想成为一名高级数据科学家,但意识到自己缺乏SQL知识。
学习永不停息。总是对自己说“我什么都不知道”;它给了你继续学习之旅的决心。知识唾手可得,如果你不利用它,你就会停留在原地。
能够谦逊自己,推动自己不断学习,这将帮助你提升自己的形象,保持相关性,为自己打开新的大门,并为意想不到的事情做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10