
建立一个成功的事业带来了很多好处和改变生活的机会。不幸的是,我们生活在一个受金钱和社会地位支配但也受其驱使的社会。众所周知,向上爬可以提高你的生活质量。它提供安全感和成就感。人们已经能够把他们的生活从零变成雄心勃勃的事业。
如果你是一名数据科学家,你正在设定2022年的目标来改善和建设你的职业生涯,你已经进入了正确的页面。
数据科学家是被雇佣来分析和解释复杂数据的人。他们是数学家、计算机科学家和善于发现趋势的人的混合体。能够破译大型数据集,分析和解释这种分析使公司能够实现这些结果,以实现他们的短期和长期业务目标。
软技能是伟大的,在发展你的职业生涯中是非常重要的。然而,要将自己定义为一名数据科学家,它需要诸如分析、数据可视化、机器学习、统计等硬技能。配合软技能,如问题解决者,热切和自我激励的学习者,以及批判性思维者,将帮助你成为一名成功的数据科学家。
科技世界正在以如此快的速度发展,唯一阻止你在这个行业建立职业生涯的是证明你提供这些硬技能的资格。
在你仓促选择任何资格或课程之前。理解数据科学行业中有各种各样的角色是很好的,而不仅仅是一个数据科学家。下面是数据科学中最常见的职业列表。
让我们把最明显的一个拿出来,以阻止混乱。数据科学家从各种来源提取、分析和解释大量数据。他们将了解业务需求,并使用数据来开发假设,分析数据,并探索与业务议程有关的不同模式。
他们还使用算法方法、人工智能、机器学习和统计工具来进一步分析数据,使其对企业有用。业务分析也是以数据科学家的角色实现的,以向公司展示数据如何被证明在未来影响或造福于公司。
资深数据科学家根据对企业未来需求的预测,使用数据来指导和塑造公司的正确方向。这可能包括指导、建议和雇佣初级员工,引导他们朝着公司的目标前进。除了管理数据团队,他们还分析数据以解决复杂的业务问题,并推动从原型到生产的新标准的开发。
高级数据科学家所需的硬技能与数据科学家相似,但在机器学习、SQL和不同的编程语言等各个方面都有更多年的经验。他们还将具有非凡的人际交往和人际交往技能,因为他们的角色包括管理和指导高技能的员工。对于依赖数据的公司来说,资深数据科学家就像是这艘船的船长。没有他们的专业知识、知识和经验,团队的其他成员难以满足业务当前和未来的需求。
商业智能分析师的角色是识别潜在的改进机会,发现趋势,并通过利用数据帮助业务增长。他们可以识别潜在的问题并提出解决方案,帮助公司更清楚地了解他们的立场。他们的作用纯粹是为了提高效率、生产力、推动销售和实现企业的短期和长期目标。
数据挖掘是在大型数据集中提取、排序和识别模式的过程,这些模式可以改进企业的系统和操作。数据挖掘工程师建立和管理用于存储和分析数据的基础设施。他们的角色可能包括构建数据仓库和组织数据,使其他团队成员可以访问这些数据。数据挖掘工程师任务的关键缩写是ETL:提取、转换和加载。
他们将拥有机器学习、统计学、数据库系统等硬技能,最重要的是SQL,它被广泛用于存储和访问数据。
数据架构师创建数据管理系统用来集中、集成、管理、维护和保护内部或外部数据源的蓝图。数据架构师与用户、开发人员和系统设计人员密切合作,允许员工访问分配位置中的特定和关键信息。
根据Glassdoor的数据,随着科技的持续发展和数百万个科技和大数据领域的职位空缺,数据科学家的角色是美国第二好的工作。时尚、社交媒体和金融等各行各业的公司都在利用数据科学家的技能,在竞争中领先一步,降低成本,减少对公司的潜在威胁。企业在做出明智的决策和有效的规划时严重依赖数据,因此对数据科学家的需求将永远存在。
成为一名数据科学家是具有挑战性的,它包括繁重的工作量、持续的学习,以及不理解为什么数据会中断或代码没有完成您希望它做的事情的几天。任何有巨大好处的事情都不容易。
成为一名数据科学家的要求是困难的,然而,一旦你完成了正确的教育,你将能够收获好处。随着数据成为不同部门的重要元素,数据科学技能在这些部门之间变得更加容易转移。有了正确的培训和资格,你可以在职业生涯开始时成为一家政治公司的数据科学家,几年后为一家大型金融科技公司工作。
成为一名数据科学家可以让你在学习新技能的同时,带着你的硬技能四处走动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10