
建立一个成功的事业带来了很多好处和改变生活的机会。不幸的是,我们生活在一个受金钱和社会地位支配但也受其驱使的社会。众所周知,向上爬可以提高你的生活质量。它提供安全感和成就感。人们已经能够把他们的生活从零变成雄心勃勃的事业。
如果你是一名数据科学家,你正在设定2022年的目标来改善和建设你的职业生涯,你已经进入了正确的页面。
数据科学家是被雇佣来分析和解释复杂数据的人。他们是数学家、计算机科学家和善于发现趋势的人的混合体。能够破译大型数据集,分析和解释这种分析使公司能够实现这些结果,以实现他们的短期和长期业务目标。
软技能是伟大的,在发展你的职业生涯中是非常重要的。然而,要将自己定义为一名数据科学家,它需要诸如分析、数据可视化、机器学习、统计等硬技能。配合软技能,如问题解决者,热切和自我激励的学习者,以及批判性思维者,将帮助你成为一名成功的数据科学家。
科技世界正在以如此快的速度发展,唯一阻止你在这个行业建立职业生涯的是证明你提供这些硬技能的资格。
在你仓促选择任何资格或课程之前。理解数据科学行业中有各种各样的角色是很好的,而不仅仅是一个数据科学家。下面是数据科学中最常见的职业列表。
让我们把最明显的一个拿出来,以阻止混乱。数据科学家从各种来源提取、分析和解释大量数据。他们将了解业务需求,并使用数据来开发假设,分析数据,并探索与业务议程有关的不同模式。
他们还使用算法方法、人工智能、机器学习和统计工具来进一步分析数据,使其对企业有用。业务分析也是以数据科学家的角色实现的,以向公司展示数据如何被证明在未来影响或造福于公司。
资深数据科学家根据对企业未来需求的预测,使用数据来指导和塑造公司的正确方向。这可能包括指导、建议和雇佣初级员工,引导他们朝着公司的目标前进。除了管理数据团队,他们还分析数据以解决复杂的业务问题,并推动从原型到生产的新标准的开发。
高级数据科学家所需的硬技能与数据科学家相似,但在机器学习、SQL和不同的编程语言等各个方面都有更多年的经验。他们还将具有非凡的人际交往和人际交往技能,因为他们的角色包括管理和指导高技能的员工。对于依赖数据的公司来说,资深数据科学家就像是这艘船的船长。没有他们的专业知识、知识和经验,团队的其他成员难以满足业务当前和未来的需求。
商业智能分析师的角色是识别潜在的改进机会,发现趋势,并通过利用数据帮助业务增长。他们可以识别潜在的问题并提出解决方案,帮助公司更清楚地了解他们的立场。他们的作用纯粹是为了提高效率、生产力、推动销售和实现企业的短期和长期目标。
数据挖掘是在大型数据集中提取、排序和识别模式的过程,这些模式可以改进企业的系统和操作。数据挖掘工程师建立和管理用于存储和分析数据的基础设施。他们的角色可能包括构建数据仓库和组织数据,使其他团队成员可以访问这些数据。数据挖掘工程师任务的关键缩写是ETL:提取、转换和加载。
他们将拥有机器学习、统计学、数据库系统等硬技能,最重要的是SQL,它被广泛用于存储和访问数据。
数据架构师创建数据管理系统用来集中、集成、管理、维护和保护内部或外部数据源的蓝图。数据架构师与用户、开发人员和系统设计人员密切合作,允许员工访问分配位置中的特定和关键信息。
根据Glassdoor的数据,随着科技的持续发展和数百万个科技和大数据领域的职位空缺,数据科学家的角色是美国第二好的工作。时尚、社交媒体和金融等各行各业的公司都在利用数据科学家的技能,在竞争中领先一步,降低成本,减少对公司的潜在威胁。企业在做出明智的决策和有效的规划时严重依赖数据,因此对数据科学家的需求将永远存在。
成为一名数据科学家是具有挑战性的,它包括繁重的工作量、持续的学习,以及不理解为什么数据会中断或代码没有完成您希望它做的事情的几天。任何有巨大好处的事情都不容易。
成为一名数据科学家的要求是困难的,然而,一旦你完成了正确的教育,你将能够收获好处。随着数据成为不同部门的重要元素,数据科学技能在这些部门之间变得更加容易转移。有了正确的培训和资格,你可以在职业生涯开始时成为一家政治公司的数据科学家,几年后为一家大型金融科技公司工作。
成为一名数据科学家可以让你在学习新技能的同时,带着你的硬技能四处走动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08