建立一个成功的事业带来了很多好处和改变生活的机会。不幸的是,我们生活在一个受金钱和社会地位支配但也受其驱使的社会。众所周知,向上爬可以提高你的生活质量。它提供安全感和成就感。人们已经能够把他们的生活从零变成雄心勃勃的事业。
如果你是一名数据科学家,你正在设定2022年的目标来改善和建设你的职业生涯,你已经进入了正确的页面。
数据科学家是被雇佣来分析和解释复杂数据的人。他们是数学家、计算机科学家和善于发现趋势的人的混合体。能够破译大型数据集,分析和解释这种分析使公司能够实现这些结果,以实现他们的短期和长期业务目标。
软技能是伟大的,在发展你的职业生涯中是非常重要的。然而,要将自己定义为一名数据科学家,它需要诸如分析、数据可视化、机器学习、统计等硬技能。配合软技能,如问题解决者,热切和自我激励的学习者,以及批判性思维者,将帮助你成为一名成功的数据科学家。
科技世界正在以如此快的速度发展,唯一阻止你在这个行业建立职业生涯的是证明你提供这些硬技能的资格。
在你仓促选择任何资格或课程之前。理解数据科学行业中有各种各样的角色是很好的,而不仅仅是一个数据科学家。下面是数据科学中最常见的职业列表。
让我们把最明显的一个拿出来,以阻止混乱。数据科学家从各种来源提取、分析和解释大量数据。他们将了解业务需求,并使用数据来开发假设,分析数据,并探索与业务议程有关的不同模式。
他们还使用算法方法、人工智能、机器学习和统计工具来进一步分析数据,使其对企业有用。业务分析也是以数据科学家的角色实现的,以向公司展示数据如何被证明在未来影响或造福于公司。
资深数据科学家根据对企业未来需求的预测,使用数据来指导和塑造公司的正确方向。这可能包括指导、建议和雇佣初级员工,引导他们朝着公司的目标前进。除了管理数据团队,他们还分析数据以解决复杂的业务问题,并推动从原型到生产的新标准的开发。
高级数据科学家所需的硬技能与数据科学家相似,但在机器学习、SQL和不同的编程语言等各个方面都有更多年的经验。他们还将具有非凡的人际交往和人际交往技能,因为他们的角色包括管理和指导高技能的员工。对于依赖数据的公司来说,资深数据科学家就像是这艘船的船长。没有他们的专业知识、知识和经验,团队的其他成员难以满足业务当前和未来的需求。
商业智能分析师的角色是识别潜在的改进机会,发现趋势,并通过利用数据帮助业务增长。他们可以识别潜在的问题并提出解决方案,帮助公司更清楚地了解他们的立场。他们的作用纯粹是为了提高效率、生产力、推动销售和实现企业的短期和长期目标。
数据挖掘是在大型数据集中提取、排序和识别模式的过程,这些模式可以改进企业的系统和操作。数据挖掘工程师建立和管理用于存储和分析数据的基础设施。他们的角色可能包括构建数据仓库和组织数据,使其他团队成员可以访问这些数据。数据挖掘工程师任务的关键缩写是ETL:提取、转换和加载。
他们将拥有机器学习、统计学、数据库系统等硬技能,最重要的是SQL,它被广泛用于存储和访问数据。
数据架构师创建数据管理系统用来集中、集成、管理、维护和保护内部或外部数据源的蓝图。数据架构师与用户、开发人员和系统设计人员密切合作,允许员工访问分配位置中的特定和关键信息。
根据Glassdoor的数据,随着科技的持续发展和数百万个科技和大数据领域的职位空缺,数据科学家的角色是美国第二好的工作。时尚、社交媒体和金融等各行各业的公司都在利用数据科学家的技能,在竞争中领先一步,降低成本,减少对公司的潜在威胁。企业在做出明智的决策和有效的规划时严重依赖数据,因此对数据科学家的需求将永远存在。
成为一名数据科学家是具有挑战性的,它包括繁重的工作量、持续的学习,以及不理解为什么数据会中断或代码没有完成您希望它做的事情的几天。任何有巨大好处的事情都不容易。
成为一名数据科学家的要求是困难的,然而,一旦你完成了正确的教育,你将能够收获好处。随着数据成为不同部门的重要元素,数据科学技能在这些部门之间变得更加容易转移。有了正确的培训和资格,你可以在职业生涯开始时成为一家政治公司的数据科学家,几年后为一家大型金融科技公司工作。
成为一名数据科学家可以让你在学习新技能的同时,带着你的硬技能四处走动。
数据分析咨询请扫描二维码
寻找数据分析之路 学习路径选择: 数据分析领域广泛,包括统计学、编程(如Python、SQL)、数据可视化等。建议从基础概念开始 ...
2024-12-02数据分析领域是一个广阔而令人兴奋的领域,涉及众多强大工具和软件。掌握这些工具不仅可以提升我们的工作效率,还能让数据讲述更 ...
2024-12-02在当今信息爆炸的时代,数据成为引领业务决策和创新的关键。数据分析作为一项关键技能,已经成为各行业中备受追捧的职业。本文将 ...
2024-12-02在当今竞争激烈的职场环境中,掌握数据分析技能已然成为职业发展中不可或缺的一环。无论你是刚入行的菜鸟还是希望获得更多机会的 ...
2024-12-02重要性和影响 数据分析技能对职业发展具有显著影响。不仅在就业市场竞争激烈,个人职业路径上也起着关键作用。数据分析需求广泛 ...
2024-12-02在追求数据分析师梦想的道路上,最常问及的问题之一是:“最佳学习时间究竟是多久?”这个问题承载着我们对知识获取和实践运用的 ...
2024-12-02在当今信息爆炸的时代,数据早已成为企业决策和发展的核心。掌握数据分析技能不仅可以让你更好地理解数据背后的故事,还可以在职 ...
2024-12-02数学课程对数据分析师的重要性 数据分析师的角色在当今信息时代变得至关重要。他们扮演着解读数据、发现趋势以及为业务决策提供 ...
2024-12-02作为数据分析领域的探险家,我们身处一个充满机遇与挑战的时代。数据分析师不仅面临着广阔的职业前景,还要应对技术进步、人才竞 ...
2024-12-02就业前景与挑战 数据分析师在当前和未来的就业市场中面临着广阔的机遇和挑战。随着大数据时代的到来,企业对数据分析师的需求不 ...
2024-12-02作为数据分析师,掌握数据可视化技术是至关重要的。通过有效的数据呈现和分析,我们能够从数据中提炼出有意义的见解,为业务决策 ...
2024-12-02在今天的数字化时代,数据扮演着至关重要的角色。对于数据分析师而言,熟练掌握各种数据可视化技术至关重要。通过恰到好处的数据 ...
2024-12-02在追求数据分析技能提升的漫漫征途上,制定科学合理的学习计划和精准的时间管理至关重要。本文将为您呈现一份系统且实用的数据分 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为许多行业中不可或缺的一环。然而,要想在这个领域脱颖而出,除了熟练掌握技术工具外,科 ...
2024-12-02在当今数字化时代,数据分析已成为各行各业中至关重要的一环。掌握数据分析技能不仅可以拓宽个人职业发展道路,还能为企业决策提 ...
2024-12-02在追求数据分析职业发展的道路上,合适的学习路径和认证至关重要。从基础到高级,多样化的课程和证书为不同层次的学习者提供了丰 ...
2024-12-02在追求数据分析领域的深度和广度时,建立坚实的基础至关重要。这些基础不仅承载着理解数据的能力,还支撑着对数据进行精确处理和 ...
2024-12-02数据分析基础知识 学习数据分析是一项渐进的过程,从掌握基础知识开始可以帮助我们更好地理解数据的本质以及处理方法。以下是学 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为各行各业提升效率、发现洞见的重要工具。不过,对于初学者来说,学习数据分析可能显得十分 ...
2024-12-02明确学习目标与需求 对于新手,选择入门级课程掌握基础概念和工具。 深入学习统计学、机器学习等高级主题则需要进阶或专业化课 ...
2024-12-02