京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建立一个成功的事业带来了很多好处和改变生活的机会。不幸的是,我们生活在一个受金钱和社会地位支配但也受其驱使的社会。众所周知,向上爬可以提高你的生活质量。它提供安全感和成就感。人们已经能够把他们的生活从零变成雄心勃勃的事业。
如果你是一名数据科学家,你正在设定2022年的目标来改善和建设你的职业生涯,你已经进入了正确的页面。
数据科学家是被雇佣来分析和解释复杂数据的人。他们是数学家、计算机科学家和善于发现趋势的人的混合体。能够破译大型数据集,分析和解释这种分析使公司能够实现这些结果,以实现他们的短期和长期业务目标。
软技能是伟大的,在发展你的职业生涯中是非常重要的。然而,要将自己定义为一名数据科学家,它需要诸如分析、数据可视化、机器学习、统计等硬技能。配合软技能,如问题解决者,热切和自我激励的学习者,以及批判性思维者,将帮助你成为一名成功的数据科学家。
科技世界正在以如此快的速度发展,唯一阻止你在这个行业建立职业生涯的是证明你提供这些硬技能的资格。
在你仓促选择任何资格或课程之前。理解数据科学行业中有各种各样的角色是很好的,而不仅仅是一个数据科学家。下面是数据科学中最常见的职业列表。
让我们把最明显的一个拿出来,以阻止混乱。数据科学家从各种来源提取、分析和解释大量数据。他们将了解业务需求,并使用数据来开发假设,分析数据,并探索与业务议程有关的不同模式。
他们还使用算法方法、人工智能、机器学习和统计工具来进一步分析数据,使其对企业有用。业务分析也是以数据科学家的角色实现的,以向公司展示数据如何被证明在未来影响或造福于公司。
资深数据科学家根据对企业未来需求的预测,使用数据来指导和塑造公司的正确方向。这可能包括指导、建议和雇佣初级员工,引导他们朝着公司的目标前进。除了管理数据团队,他们还分析数据以解决复杂的业务问题,并推动从原型到生产的新标准的开发。
高级数据科学家所需的硬技能与数据科学家相似,但在机器学习、SQL和不同的编程语言等各个方面都有更多年的经验。他们还将具有非凡的人际交往和人际交往技能,因为他们的角色包括管理和指导高技能的员工。对于依赖数据的公司来说,资深数据科学家就像是这艘船的船长。没有他们的专业知识、知识和经验,团队的其他成员难以满足业务当前和未来的需求。
商业智能分析师的角色是识别潜在的改进机会,发现趋势,并通过利用数据帮助业务增长。他们可以识别潜在的问题并提出解决方案,帮助公司更清楚地了解他们的立场。他们的作用纯粹是为了提高效率、生产力、推动销售和实现企业的短期和长期目标。
数据挖掘是在大型数据集中提取、排序和识别模式的过程,这些模式可以改进企业的系统和操作。数据挖掘工程师建立和管理用于存储和分析数据的基础设施。他们的角色可能包括构建数据仓库和组织数据,使其他团队成员可以访问这些数据。数据挖掘工程师任务的关键缩写是ETL:提取、转换和加载。
他们将拥有机器学习、统计学、数据库系统等硬技能,最重要的是SQL,它被广泛用于存储和访问数据。
数据架构师创建数据管理系统用来集中、集成、管理、维护和保护内部或外部数据源的蓝图。数据架构师与用户、开发人员和系统设计人员密切合作,允许员工访问分配位置中的特定和关键信息。
根据Glassdoor的数据,随着科技的持续发展和数百万个科技和大数据领域的职位空缺,数据科学家的角色是美国第二好的工作。时尚、社交媒体和金融等各行各业的公司都在利用数据科学家的技能,在竞争中领先一步,降低成本,减少对公司的潜在威胁。企业在做出明智的决策和有效的规划时严重依赖数据,因此对数据科学家的需求将永远存在。
成为一名数据科学家是具有挑战性的,它包括繁重的工作量、持续的学习,以及不理解为什么数据会中断或代码没有完成您希望它做的事情的几天。任何有巨大好处的事情都不容易。
成为一名数据科学家的要求是困难的,然而,一旦你完成了正确的教育,你将能够收获好处。随着数据成为不同部门的重要元素,数据科学技能在这些部门之间变得更加容易转移。有了正确的培训和资格,你可以在职业生涯开始时成为一家政治公司的数据科学家,几年后为一家大型金融科技公司工作。
成为一名数据科学家可以让你在学习新技能的同时,带着你的硬技能四处走动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21