
当你在网上搜索时,大多数人建议你在考虑过渡或转移到另一个角色之前,先在初级职位上呆几年。与初级、中级和高级数据科学家相比,经验水平存在差异。本文将介绍对所有工作角色的期望,以及晋升所需的条件。
大多数人会看数据科学家的技能、多年经验、教育水平、专业知识、管理技能等等。要很好地理解如何区分不同级别的数据科学家之间的差异,就要理解您可以让数据科学家独自完成/处理一项任务多长时间,而不必查看他们。
使用“你可以让某人独自完成/处理一项任务多长时间而不签入?”的类比,我们可以将不同的级别划分如下:
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才能把事情做好。一个初级数据科学家可能会在没有咨询高级数据科学家的情况下达到一个被阻止的地步,并且不知道如何克服它。一个中等水平的数据科学家也可能面临困难,然而,他们会更好地掌握如何独自克服它。而一个资深的数据科学家有足够的经验来完成事情。即使这包括雇佣专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己“有人能让我独自一人在不报到的情况下完成/处理一项任务多久”。你必须对自己完全诚实,否则你就会失败。我不是说你不能设定目标,努力成为你能成为的最伟大的人。我是说,现实地对待你目前的经验水平,以帮助你找到正确的角色,并从那里不断发展。
这是一年的开始,我们都在记下我们的计划;事业或个人相关。我们都在努力打破我们今年的目标。对于所有的数据科学家,这里有一些建议,告诉你如何进步你的职业生涯,爬上阶梯,增加你的收入。
反思“你能让某人独自完成/处理一项任务多久?”这个问题,这一切都是基于独立。由于缺乏经验和技能,低年级学生往往会问更多的问题,而高年级学生有能力根据过去的经验做出决定。
这应该不会吓到你问问题。问问题没有错,那是你学习的方式。如果你不犯错误,你就不必经历一个学习过程,你就永远停滞不前。但是,不要每次都依赖于你的同事和高级职员来指挥你。当你有问题时,不要马上去找他们,试着自己去解决。当你明白如何修复问题时,你会感到一种成就感。如果你不确定你的解决方案,向你的经理征求他/她的意见。他们会感激你带着一个解决方案来找他们,而不仅仅是一个问题。
当你在阴沟里的时候,很多伟大的事情都会发生。你从一个不舒服和陌生的洞里爬出来。低年级学生通常从事较容易的工作,有时非常重复和无聊。如果你觉得你已经准备好了,向你的经理要求更有挑战性的任务,以学习和提高你的分析技能。
如果你成功地完成了任务,你的经理或资深数据科学家会意识到这一点,并为你推升职位。
资深数据科学家能够独自处理任务,这不仅是因为他们的经验水平,也是因为他们对业务目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程并不比它是一个请求更进一步。能够通过更好地把握企业的短期和长期目标来看待更大的图景,这将改善你在处理请求或试图解决问题时的思维方式。
资深数据科学家不仅根据他们的经验,还根据公司的需要来做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1's来处理和处理问题,将使您处于高级数据科学家的心态。
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助来理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家不需要与许多同事交谈。
作为一名资深数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保操作顺利进行。如果一个由资深数据科学家管理的项目出现问题,无论该任务是否由他/她完成;他们仍然必须承担责任。高级数据科学家应该保持警惕,在将错误提交给利益相关者之前识别错误。
如果一个资深人士缺乏沟通,他/她的业务就会分崩离析,很快就会意识到由于他们的无能,工作量就会落在他们身上。与其向涉众解释为什么输出是错误的,或者为什么做出了错误的决定,更好的解决方案是与数据团队进行管理和沟通,以避免这些问题。
“反馈是冠军的早餐。”
--肯·布兰查德
要求反馈是你自我提升的健康催化剂;与个人或事业有关的。向你的经理询问你的优点和缺点会帮助你了解什么对你有效,什么是你需要改进的。没有人是完美的,我们总有办法让自己变得更好。伟大的球员希望被告知真相,因为他们想继续赢下去!
我希望这篇文章能帮助你了解你所处的水平,以及你需要做些什么才能达到下一个水平。祝你在旅途中一切顺利!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29