京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业要想更快地做出反应并提供一流的客户体验,就必须对数据管理进行全面的改造。到目前为止,技术已经解决了存储和处理大数据的问题。它也已经达到了将大数据用于深度分析的能力。当我们在做这件事的时候,预计到2025年,高级数据管理解决方案的全球市场规模将达到1229亿美元。
然而,数据源类型和数量的日益多样化继续阻碍着无缝数据生命周期。到目前为止,数据管理景观是捕捉和流式数据到一个集中的数据湖。该湖将进一步处理和清理结构解决方案中的数据集。展望未来,数据专业人员已经找到了一种新的方式,通过数据网状结构解决来源的可扩展性。
什么是数据网格?
数据网格是一种分布式架构解决方案,用于分析数据的生命周期管理。基于分散化,网状结构消除了数据可用性和可访问性方面的障碍。它使用户能够从多个来源捕捉和操作洞察力,而不论其位置和类型。随后,它执行自动查询,而不必将其传送到集中的数据湖。
网状结构的分布式架构分散了每个业务领域的所有权。这意味着每个领域都能控制分析和操作用例的数据的质量、隐私、新鲜度、准确性和合规性。
从集中式数据湖迁移到分布式网格
随着数据源的数量不断增加,数据湖无法按需进行整合。有了数据网,将大量的数据倾倒到湖中是一种濒临灭绝的做法。
新的数据管理框架确保所有节点的协作参与,每个节点控制一个特定的业务单元。它通过遵循 "数据即产品 "的原则做到这一点。这意味着每个数据集都被当作一个数字产品,由干净、完整和结论性的数据集组成。这些可以按需交付给任何人和任何地方。对于一个快速增长的数据管理生态系统来说,Mesh是一个有助于提供组织数据见解的方法。
所有权的分散化减少了对工程师和科学家的依赖性。每个业务部门都控制着自己的特定领域数据。然而,每个领域仍然依赖于数据建模、安全协议和治理合规的集中标准化政策。
使用数据网格和结构
任何关于数据管理的讨论,如果忽略了结构架构,都是不完整和不相关的。围绕着数据结构和网状结构相互竞争的事实,有一个神话。这是不正确的。Gartner对这两个标题进行了并列讨论,并澄清了事实。
数据结构是一个古老而相关的架构,它推动了不同行业对结构的持续和优化使用。它自动发现并提出一个管理架构,从而简化整个数据生命周期。它还假设支持验证数据对象和重用这些对象的上下文参考。一个Mesh通过消耗当前的主题专业技术和准备数据对象的解决方案来完成这个不同的工作。
有一个神话,围绕着数据结构和网状结构相互竞争的事实。这是不真实的。事实上,织物可以在从Mesh架构中提取最佳价值方面起到作用。
用基于实体的数据结构实施数据网格
考虑K2View的基于实体的数据结构架构。它可以将每个业务实体的数据保存在一个专属的微型数据库中,从而支持成百上千的这些数据库。进一步融合 "业务实体 "和 "数据作为产品 "的概念,他们的结构支持数据网状设计模式的实施。在这里,结构创建了一个来自多个来源的连接数据集的集成层。这为运营和分析工作负载提供了一个整体的景观视图。
基于实体的结构规范了所有数据产品的语义定义。根据规定,它建立了数据摄取方法和治理政策,以确保数据集的安全。鉴于结构的这种支持,网状模式在实体级存储方面表现得更好。
因此,对于网状分布式网络中的每个业务域,都会部署一个专属的结构节点。这些特定于某一业务实体的域拥有对服务和管道的本地控制,以便为消费者访问产品。
分散的数据所有权模式
企业必须从多个来源导入多种数据类型到一个集中的存储库,如数据湖。在这里,数据处理通常会消耗大量的精力,也容易出现错误。查询这种异质数据集进行分析,会直接打击成本。因此,数据专业人员一直在寻找一种替代这种集中式方法的方法。通过Mesh的分布式架构,他们能够实现每个商业实体的所有权分散。现在,这样的模式减少了产生定性见解的时间,从而增加了核心目的的价值--快速访问数据并影响关键业务决策。
分散化的方法解决了更多的问题。例如,传统数据管理中的查询方法可能会随着数据量的不可控制的增加而失去效率。它势必会迫使整个管道发生变化,最终无法做出反应。因此,随着数据源数量的增加,响应时间急剧减慢。这一直影响着提取数据价值和扩大业务成果的流程敏捷性。
通过分散化,Mesh将所有权分配给不同的领域,以满足传入数据量的挑战,并最终在他们的水平上对他们的相关集进行查询。因此,该架构使企业流程能够缩小事件和其消费分析之间的差距。企业能够在关键决策上有所改进。
通过提供数据即服务架构,Mesh为业务运营带来了灵活性。它不仅减少了IT积压,而且使数据团队能够只在精简和相关的数据流上工作。
因此,授权的消费者将很容易获得他们各自的数据集,而不会意识到背后的复杂性。
结论
从数字数据出发,web3.0致力于分散企业流程。而数据管理是这个方向上的一个重要用例。很明显,集中式的权威在一定程度上无法适应爆炸性的、传入的数据。等待和观察2022年将把数据网状结构放在前面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22