
企业要想更快地做出反应并提供一流的客户体验,就必须对数据管理进行全面的改造。到目前为止,技术已经解决了存储和处理大数据的问题。它也已经达到了将大数据用于深度分析的能力。当我们在做这件事的时候,预计到2025年,高级数据管理解决方案的全球市场规模将达到1229亿美元。
然而,数据源类型和数量的日益多样化继续阻碍着无缝数据生命周期。到目前为止,数据管理景观是捕捉和流式数据到一个集中的数据湖。该湖将进一步处理和清理结构解决方案中的数据集。展望未来,数据专业人员已经找到了一种新的方式,通过数据网状结构解决来源的可扩展性。
什么是数据网格?
数据网格是一种分布式架构解决方案,用于分析数据的生命周期管理。基于分散化,网状结构消除了数据可用性和可访问性方面的障碍。它使用户能够从多个来源捕捉和操作洞察力,而不论其位置和类型。随后,它执行自动查询,而不必将其传送到集中的数据湖。
网状结构的分布式架构分散了每个业务领域的所有权。这意味着每个领域都能控制分析和操作用例的数据的质量、隐私、新鲜度、准确性和合规性。
从集中式数据湖迁移到分布式网格
随着数据源的数量不断增加,数据湖无法按需进行整合。有了数据网,将大量的数据倾倒到湖中是一种濒临灭绝的做法。
新的数据管理框架确保所有节点的协作参与,每个节点控制一个特定的业务单元。它通过遵循 "数据即产品 "的原则做到这一点。这意味着每个数据集都被当作一个数字产品,由干净、完整和结论性的数据集组成。这些可以按需交付给任何人和任何地方。对于一个快速增长的数据管理生态系统来说,Mesh是一个有助于提供组织数据见解的方法。
所有权的分散化减少了对工程师和科学家的依赖性。每个业务部门都控制着自己的特定领域数据。然而,每个领域仍然依赖于数据建模、安全协议和治理合规的集中标准化政策。
使用数据网格和结构
任何关于数据管理的讨论,如果忽略了结构架构,都是不完整和不相关的。围绕着数据结构和网状结构相互竞争的事实,有一个神话。这是不正确的。Gartner对这两个标题进行了并列讨论,并澄清了事实。
数据结构是一个古老而相关的架构,它推动了不同行业对结构的持续和优化使用。它自动发现并提出一个管理架构,从而简化整个数据生命周期。它还假设支持验证数据对象和重用这些对象的上下文参考。一个Mesh通过消耗当前的主题专业技术和准备数据对象的解决方案来完成这个不同的工作。
有一个神话,围绕着数据结构和网状结构相互竞争的事实。这是不真实的。事实上,织物可以在从Mesh架构中提取最佳价值方面起到作用。
用基于实体的数据结构实施数据网格
考虑K2View的基于实体的数据结构架构。它可以将每个业务实体的数据保存在一个专属的微型数据库中,从而支持成百上千的这些数据库。进一步融合 "业务实体 "和 "数据作为产品 "的概念,他们的结构支持数据网状设计模式的实施。在这里,结构创建了一个来自多个来源的连接数据集的集成层。这为运营和分析工作负载提供了一个整体的景观视图。
基于实体的结构规范了所有数据产品的语义定义。根据规定,它建立了数据摄取方法和治理政策,以确保数据集的安全。鉴于结构的这种支持,网状模式在实体级存储方面表现得更好。
因此,对于网状分布式网络中的每个业务域,都会部署一个专属的结构节点。这些特定于某一业务实体的域拥有对服务和管道的本地控制,以便为消费者访问产品。
分散的数据所有权模式
企业必须从多个来源导入多种数据类型到一个集中的存储库,如数据湖。在这里,数据处理通常会消耗大量的精力,也容易出现错误。查询这种异质数据集进行分析,会直接打击成本。因此,数据专业人员一直在寻找一种替代这种集中式方法的方法。通过Mesh的分布式架构,他们能够实现每个商业实体的所有权分散。现在,这样的模式减少了产生定性见解的时间,从而增加了核心目的的价值--快速访问数据并影响关键业务决策。
分散化的方法解决了更多的问题。例如,传统数据管理中的查询方法可能会随着数据量的不可控制的增加而失去效率。它势必会迫使整个管道发生变化,最终无法做出反应。因此,随着数据源数量的增加,响应时间急剧减慢。这一直影响着提取数据价值和扩大业务成果的流程敏捷性。
通过分散化,Mesh将所有权分配给不同的领域,以满足传入数据量的挑战,并最终在他们的水平上对他们的相关集进行查询。因此,该架构使企业流程能够缩小事件和其消费分析之间的差距。企业能够在关键决策上有所改进。
通过提供数据即服务架构,Mesh为业务运营带来了灵活性。它不仅减少了IT积压,而且使数据团队能够只在精简和相关的数据流上工作。
因此,授权的消费者将很容易获得他们各自的数据集,而不会意识到背后的复杂性。
结论
从数字数据出发,web3.0致力于分散企业流程。而数据管理是这个方向上的一个重要用例。很明显,集中式的权威在一定程度上无法适应爆炸性的、传入的数据。等待和观察2022年将把数据网状结构放在前面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09