
作者: 俊欣
来源:关于数据分析与可视化
前不久,小编刷到这样一条短视频,“1.7亿的90后仅有约1000万对结婚,结婚率不到10%”,当然我们也无法查实当中数据的来源以及真实性,不过小编倒是总能听说身边的朋友在抱怨脱单难、找不到合适的对象。
今天小编通过Python写了一个简单的脚本在抓取公开的相亲文案,看看在相亲的都是些什么样的人?他们的择偶标准又是什么样子的?什么样子的人更加容易脱单?
我们引入需要用到的库,这里用到Python当中的requests库来发送和接受请求,通过正则表达式re这个库来解析数据
import requests
from tenacity import * import re import time
很多时候对遇到请求超时的情况,因此当出现一次错的时候,我们会多尝试几次,因此这里使用retry装饰器来多次尝试
@retry(stop=stop_after_attempt(5)) def do_requests(url):
response = requests.get(url, headers=headers, proxies=proxies, timeout=10) return response.text
我们抓取的数据包括出生年份、身高/体重、学历、收入、职业、自我介绍、择偶标准、车房情况等等,都是通过正则表达式re库来实现的,
date_of_birth = re.compile("<br/>①出生年月/星座(.*?)<br/>", re.M | re.S) sex = re.compile("<br/>【基本资料】(.*?)<br/>") height = re.compile("<br/>②身高/体重(.*?)<br/>") education = re.compile("<br/>⑤学历(.*?)<br/>") jobs_1 = re.compile("<br/>⑥职业(.*?)<br/>") income = re.compile("<br/>⑦月均收入(.*?)<br/>") married = re.compile("<br/>⑨有无婚史(.*?)<br/>") house_cars = re.compile("<br/>⑧车房情况(.*?)<br/>") self_intro = re.compile("<br/>⑪ 自我介绍(.*?)<br/>") requirements = re.compile("<br/>【择偶标准】<br/>(.*?)</a>") family_member = re.compile("<br/>⑩家庭成员(.*?)<br/>")
下面我们通过pyecharts库来绘制一下分析的结果,对了,要是读者朋友不知道怎么使用pyecharts这个库,可以阅读一下小编写的上几篇文章,都是非常干货的
我们先来看一下性别比例,从分布来看,女生前来相亲的比例更高,主要也是因为数据源是来自北京、上海、杭州等大城市的相亲介绍,大城市中似乎女生脱单更加困难一些,
我们再来看一下单身的女性的特征,首先她们的年龄主要集中在94、93以及95年左右,正好都是处在适婚的年龄
而她们的学历,本科占到了绝大多数,基本上都有本科的学历,而大专的占比排在第二,硕士和博士处于少数
另外小编也对单身女性的星座做了一个统计,发现处女座、天秤座以及射手座、白羊座的女性单身率略高一些
最后,我们来看一下她们的择偶标准吧,小编将她们的择偶标准单独提取出来,然后绘制成了词云图
review_list = []
reviews = get_cut_words("".join(df_girls["requirements"].astype(str).tolist()))
reviews_counter = Counter(reviews).most_common(200)
print(reviews_counter)
for review in reviews_counter:
review_list.append((" " + review[0] + " ") * review[1])
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=500, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
最后呈现出来的样子如下图所示
可见相亲市场上的女生,她们首先是希望男方是要有房有车的,其次要是男方之前存在婚史,女生会比较介意,然后要是有稳定的工作、有能力有责任心,通常都会给女生留下比较好的印象,而至于外在条件上,大多数女生的回答则是身高在175-180左右,年龄在90-97年之间。
近年来,随着人们思想观念的改变,相亲也逐渐得到年轻人的接受与认可,特别是对于那些圈子比较窄,接触不到异性的人而言。小编希望每个人都能够在最后收获爱情,拥有美好的生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19