
你会不会正在做无意义的数据分析?
并没有符合你的预期,活跃度?
会不会指标的逻辑有问题?
假设活跃度的口径,是用户当天用过登录app的记录
问题1、登录app的用户真的就算是活跃了吗?
问题2、后台记录的登录条件上是否有限制?push页进来的也算登录吗,还是一定要首页进来的?
问题3、统计量下的活跃用户真的是有价值的客户,可以为后续的转化提供基础,没有噪声用户的吗?
1、常用的用户数据指标有哪些?
理解“日活/月活度数据指标”-使用场景
到底活跃对我们意味着什么?
活跃用户,是相对于“流失用户”的一个概念,是指那些会时不时地光顾下app,并为app业务带来一些价值的用户。
活跃用户是一个公司讲故事的资本。针对的是小型的,有融资需求的公司,如果一个公司有百万以上的日活用户,即使没有盈利,依然会受到投资人的青睐,变现是小事,有没有用户使用才是大事。现在产品的变现方式已经很成熟,有百万用户的产品通过接入广告,也可以获得一些收益。
在用户活跃分析的时候,不是为了逼用户天天来戳一下,而是为付费、或者其他转化提供稳定的支持,那么选择活跃度指标时需要考量公司的业务目标。
理解“日活/月活度数据指标”-日和月的定义
日:一般我们指一个自然日,即0:00–24:00
月:上个月的1号0点-当月最后一天的23点59分
月活跃用户的计算逻辑是什么?
A、每一天的活跃用户的累加(或者取平均值)
B、这个月所有活跃用户去重的总数
理解“日活/月活度数据指标”--活跃的定义
活跃度的几种口径
A、检测到用户的登录信息(一些强登录的app,例如网银、网游)
B、指定多个页面的埋点数据上报
C、通过后台带用户信息或者用户ip的请求信息(无账号APP)
D、停留指定页面超过一定时长
理解“用户日活/月活度数据指标”--活跃的定义
理解“增量数据指标”--新增用户的使用场景
对“新增用户”的定义实际上是通过用户新增的后续行为进行一个简单的用户分层,满足当前运营阶段的“关键指标”的用户作为有效新增用户,也是后续运营的重点用户。
在定义好“新增用户”的指标后,拉新行为也就并不是只看重下载和打开,而是围绕核心指标进行优化,例如以注册为指标,需要通过观察用户的注册行为路径优化注册流程体验。
理解“留存率”--留存率的含义
留存指的是:一批新增用户中,在指定的时间段内,没有卸载的用户(app场景)。
1.新增账号第X日:某日新增的账号中,在新增日后第X日有登录行为记为留存
2.新增账号X日内:某日新增的账号中,在新增日后的X日内有登录行为记为留存
3.活跃账号第X日:某日活跃的账号中,在新增日后第X日有登录行为记为留存
4.活跃账号X日内:某日活跃的账号中,在新增日后的X日内有登录行为记为留存
其他的基础指标的定义
其他的基础指标的定义
2、哪些指标需要做指标预警
A.指标跟业务挂钩。可以做指标的变量很多,但是可以拿来做预警的却不多,选择直接跟指标挂钩的。例如电商,直接就是销售量,接口就是调用次数,产品就是环节转化,运营就是用户增长量
B.避免预警指标过剩,造成指标预警不重视,你设定报警的指标,一定是要真的很严重,你才能推送的那种,不要设置不严重的,但是造成邮件泛滥,没人理会预警就得不偿失了。
C.预警指标需要做重要性排序,先实现会经常出现异常导致你经常加班分析的指标,先实现在业务层面的重要指标,预警指标推送时间不要挤在一起,不然你同时接受多个预警,你不会仔细去看,而且要是都是异常的话,一下子那么多异常出来,你会心慌,那么分析思路就不那么清晰了。
3、指标预警的大类
(1)接口类的数据指标预警(主要用于it部门监控接口或者平台功能稳定),模型准确率
(2)产品类指标的数据指标预警(主要是产品部门用于监控产品功能的转化,产品的访问之类的)
(3)运营类指标的数据预警(主要是运营部门用于监控用户的信息,例如用户的激增,或者用户的大幅度访问下降。)
1、比率占比法
其实就是看各个区间的占比是否跟之前的比较接近,但是这里需要注意的是,不要把“之前”拉的太长,一般是最近7天或者最近3天就可以了。那么这个时段之前的占比(或数据量),这个占比有以下几种方法可以参考:
A.就是计算过去几天的每个时段的平均占比(或数据量)。
B.过去7天,按照距离的时间越长,那么权重变少,例如最近往前推一天是0.5,最近往前推二天是0.3,这样子的权重计算。
C.就是只用过去一天的数据做对比,但是这个不太实际,不过也要看你的业务是怎样的。
2、统计方法
A.时间序列分析。数据量在时间序列上是可以有规律可以遵循的,所以可以利用时间序列分析的方法,预测当天的数据量,若实际与预测的数据量作差值,相差太多则触发指标预警推送。(这种方法不推荐,在理论上可以过得去,但是实际的运用其实相对复杂并且效果也不一定好)
B.相关系数计算。第一点的占比法中,需要每个时段都去计算差别,产生的指标就会多,一旦这种数据量的类型多起来,就会很复杂,所以可以将这些占比列成一个向量,计算今天与之前的数据量组成的向量的相关系数的大小,当太小的时候,主动触发预警。
3、差值&定值法
这个方法是最简单的,这个在模型监控中常用到,其实就是将原先的模型效果与现在的模型效果做比较,或者直接计算模型KS后者auc值看是否低于某值,则预警,但是这里注意的是,这种模型的预警一般没办法以天为周期计算,因为模型的y值往往是有滞后性的。
4、孤立点检测
对比以上几个在单一维度上的方法,孤立点检测是基于多维度建立的向量来观察异常数据点的方法。
指标预警的方式-钉钉机器人&企业微信机器人通知
钉钉机器人还有企业微信机器人都设置了群机器人的功能,大部分的开发会拿来检测任务是否正常运行,或者定时任务是否完成运行的提醒,所以你也可以拿来作为你的指标预警推送,网上都有响应的教程可以作为参考,写python即可实现。
指标预警的方式-邮件通知
当公司没有第一点的软件,或者机器不能链接外网的时候,可以借助邮件推送的方式,利用python中的smtplib包实现。
指标预警的方式-平台推送
到了特地为每个分析师都开发了这个预警平台或者自研的bi平台可以满足预警推送的功能化,也可以通过平台推送,这个话可能涉及的东西相对多一些,如果你会写接口,借助django框架写接口之后吐给前端去帮你展示也是可以的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23