京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:陈熹
大家好,我是早起。
在之前的文章 批量翻译文档 中,我们介绍了如何调用百度翻译API完成实际的文档翻译需求。如果是科研、深度学习等需要经常阅读大量论文的工作,批量翻译就能大大提高效率。
本文将进一步使用 Python 实现另一个在科研学术领域的办公自动化应用。「结合爬虫批量翻译文献题目和摘要,并存储搜索和翻译结果至 Excel中」
完成效果如下,指定的外文文献标题、摘要都被批量翻译后存储在Excel中,我们可以大致浏览后有选择性的挑选文章阅读!
本文以ACM协会的文献为例,搜索的关键词是 “对抗生成网络+眼底” ,即 “GAN+fundus”
本文需求可以看做三块内容:爬虫+翻译+存储 在使用百度的通用翻译 API 之前需要完成以下工作:
“使用百度账号登录百度翻译开放平台(
http://api.fanyi.baidu.com)注册成为开发者,获得APPID;进行开发者认证(如仅需标准版可跳过);开通通用翻译API服务:开通链接参考技术文档和Demo编写代码”
完成后在个人页面在即可看到 ID 和密钥,这个很重要!
关于如何使用Python爬取翻译结果的细节本文就不再赘述!我已经将通用翻译 API 的 demo代码写好,已经对输出做简单修改,拿走就能用!
import requests import random import json from hashlib import md5 # Set your own appid/appkey. appid = 'xxx' appkey = 'xxx' # For list of language codes, please refer to `https://api.fanyi.baidu.com/doc/21` from_lang = 'en' to_lang = 'zh' endpoint = 'http://api.fanyi.baidu.com' path = '/api/trans/vip/translate' url = endpoint + path
query = 'Hello World! This is 1st paragraph.nThis is 2nd paragraph.' # Generate salt and sign def make_md5(s, encoding='utf-8'): return md5(s.encode(encoding)).hexdigest()
salt = random.randint(32768, 65536)
sign = make_md5(appid + query + str(salt) + appkey) # Build request headers = {'Content-Type': 'application/x-www-form-urlencoded'}
payload = {'appid': appid, 'q': query, 'from': from_lang, 'to': to_lang, 'salt': salt, 'sign': sign} # Send request r = requests.post(url, params=payload, headers=headers)
result = r.json() # Show response for res in result['trans_result']:
print(res['dst'])
在本需求中可以考虑将上面的API重新包装成函数,将爬取的题目和摘要看做两个文本输入函数后,返回翻译的结果:
import requests import random import json from hashlib import md5 def make_md5(s, encoding='utf-8'): return md5(s.encode(encoding)).hexdigest() def Baidu_translate(query): # Set your own appid/appkey. appid = 'xxx' appkey = 'xxx' from_lang = 'en' to_lang = 'zh' endpoint = 'http://api.fanyi.baidu.com' path = '/api/trans/vip/translate' url = endpoint + path
try:
salt = random.randint(32768, 65536)
sign = make_md5(appid + query + str(salt) + appkey)
# Build request headers_new = {'Content-Type': 'application/x-www-form-urlencoded'}
payload = {'appid': appid, 'q': query, 'from': from_lang, 'to': to_lang, 'salt': salt, 'sign': sign}
# Send request r = requests.post(url, params=payload, headers=headers_new)
result = r.json()['trans_result'][0]['dst']
return result
except:
return '翻译出错'
函数中用 try 捕获错误避免中途因为提交的文本为空,而导致的报错终止程序
存储部分,通过 openpyxl 或者 xlwings 存储到 Excel 中就可以
爬虫部分,两个网站的逻辑非常类似,具体见下文
首先爬取ACM的摘要,在首页搜索框中输入:GAN+fundus 跳转后可以发现,URL包含了关键词:
那么后面的搜索就可以直接用URL拼接:
keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
搜索结果非常多,本文爬取第一页文章的摘要为例,后续读者当关键词锁定的文献比较少或者想获取全部文献,可以自行寻找URL翻页逻辑
同时我们发现,摘要显示不全,确认源代码和ajax动态加载不包含完整摘要,因此可以考虑进入各文献的详情页获取摘要:
回到搜索结果页,对详情页分析可以发现每个文献可获取的href跟 dl.acm.org 拼接后即为详情页URL:
接下来就可以利用Xpath获取搜索页第一页全部文献的 href 并拼接成新URL:
import requests from lxml import html
keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
html_data = requests.get(url).text
selector = html.fromstring(html_data)
articles = selector.xpath('//*[@id="pb-page-content"]/div/main/div[1]/div/div[2]/div/ul/li') for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
print(url_new)
获得新的URL之后,重新用Xpath解析新的网页获取题目和摘要:
for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
print('Title: ' + title)
print('Abstract: ' + abstract)
print('-' * 20)
题目和摘要可以成功输出,但现在还是英文形式。只需要将文本提交给上文中包装好的翻译函数,输出返回值就是中文翻译形式了。注意免费的API每秒只允许调用一次,可以考虑将题目和摘要组合成一个文本同时提交,或者中间休眠一秒:
for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
title = 'Title: ' + title
translated_title = Baidu_translate(title)
print(title)
print(translated_title)
time.sleep(1)
abstract = 'Abstract: ' + abstract translated_abstract = Baidu_translate(abstract)
print(abstract)
print(translated_abstract)
time.sleep(1)
print('-' * 20)
题目和摘要成功翻译!接下来可以自定义对接意向的持久化存储了,以openpyxl为例,首先在代码的开头用 openpyxl 创建 Excel 文件并写入表头:
from openpyxl import Workbook
wb = Workbook()
sheet = wb.active
header = ['序号', '题目', '题目(译)', '摘要', '摘要(译)']
sheet.append(header)
path = 'xxx' # 希望保存文件的路径
用变量 num 标记文章的顺序,并在每篇文章解析和翻译完后利用 sheet.append(list) 写入 Excel,循环结束后保存文件即完成全部存储:
num = 0 keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
html_data = requests.get(url).text
selector = html.fromstring(html_data)
articles = selector.xpath('//*[@id="pb-page-content"]/div/main/div[1]/div/div[2]/div/ul/li') for article in articles:
num += 1 url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
title = 'Title: ' + title
translated_title = Baidu_translate(title)
print(title)
print(translated_title)
time.sleep(1)
abstract = 'Abstract: ' + abstract
translated_abstract = Baidu_translate(abstract)
print(abstract)
print(translated_abstract)
time.sleep(1)
print('-' * 20)
sheet.append([num, title, translated_title, abstract, translated_abstract])
wb.save(path + r'文献输出.xlsx')
最终实现效果如下,可以看到指定的文章标题、摘要都被翻译提取出来,我们可以大致浏览后有选择的查阅文章。
另外还有一个重要的计算机协会,IEEE(https://ieeexplore.ieee.org/Xplore/home.jsp),网页信息爬取逻辑和ACM非常类似,不再赘述
综合各种办公自动化技术,我们可以实现各式各样的办公或科研需求,扎实的技术是最重要的前提。
例如本文的需求,其实我们还可以通过 openpyxl 或者 xlwings 存储到 Excel 中,实际上还可以 python-docx 写入 Word 中,甚至从文献中获取图片,借助 python-pptx 写入 PPT 中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29