
来源:早起Python
作者:刘早起
大家好,我是早起。
最近我在和不同读者的交流中,发现很多人和我一样,日常使用的主语言并不是Python,可能是Java/R/Excel等,学Python倒不如说是学requests采集数据,Pandas数据处理、办公自动化、数据可视化等用于辅助工作的功能。
关于爬虫我基本上每周的都会有分享不同的案例,Python数据处理也推出了Pandas120题、NumPy80题、办公自动化也累积了20余个真实案例,但唯独在数据可视化上我没有写出一个不错的专题。
为什么?因为Python数据可视化工具太多了,比如matplotlib、seaborn、pyecharts等,不同的工具使用逻辑不一致,并且同一个工具不同版本之间的绘图逻辑也有差异,怎么办?
为了尝试解决这个问题,早起找了几位同样热爱数据分析可视化的小伙伴,从matplotlib出发,围绕数据可视化打造一个全新的公众号「可视化图鉴」,与其说是公众号,我更愿意把它当成一个小工具用
图鉴,就是让你在需要使用Python进行可视化的场景下,快速找到你想要的图并制作出来。
「先把你想要的图画出来,再去研究背后的逻辑!」
我们以matplotlib为起点开始创作,目前围绕matplotlib已经更新了大多数图的基础、进阶图以及少量的高级样式图型图鉴,每一幅图都给出了matplotlib版本、完整可执行的源码以及绘图原理讲解,以下为部分图鉴示例,点击图片可以直达
你只要选中你想要的图,点进去,复制我的代码,替换你的数据,就能快速将你的数据进行可视化,当然如果你想进一步了解图是如何做出来的,不仅有详细的注释,也配上了对应的文档,进一步加深你对这幅图的理解!
当然,现在收录的图鉴(大概近100张基于matplotlib的图)还远远达不到满足大多数用户的需求,但已经覆盖了常用的图,我们也继续在马不停蹄的制作中。
正如我刚开始所说,Python的可视化工具太多了,在去年我也对常用的Python可视化工具进行了对比,在那篇文章的末尾我有说到 「熟练掌握一个工具之后,了解其他工具即可!」 ,其实当时要求大家熟练掌握的工具就是matplotlib
为什么是matplotlib,从下图我们可以发现,现在流行的Python可视化工具或多或少都与matplotlib沾上一点关系,很多就是在matplotlib的基础上改进而来
另一个方面是matplotlib是安装相对简单、资料相对较多的,在没有任何Python环境的机器上,你只需要下载一个anaconda,之后傻瓜式一键安装就可以使用,而其他的库大多数需要额外进行安装、配置。并且在上面提到的文章中,我也说过:「如果你使用matplotlib,遇到一点问题,网上有很多帖子能够帮到你」,而其他的工具遇到一些细节性的问题,则不一定能通过搜索解决!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10