
中国在政策上大力推动数字化产业转型,为AI人工智能发展提供了极佳的温床。
这不,好消息传来,《世界互联网发展报告2020》和《中国互联网发展报告2020》指出,我国在AI专利申请数量上首次超美国,成全球TOP1。
另外,5G网络技术及覆盖上的领先,推动着AI、大数据、云计算、区块链等迎来井喷式发展,这些高科技相互交错影响,产生了质的变化。
尤其是作为AI人工智能发展催化剂的大数据,人口大国具备“得天独厚”的优势,大数据自然离不开“大”字,即:大而广。
中国有14亿人口,产生的数据惊人,这背后暗含的数据“关联”或“相关性”,未来将发挥巨大价值。
大数据的繁荣,已助推AI完美实现弯道超车,让AI技术在中国“遍地开花”,快速且蓬勃地发展。
现如今,人工智能已渗透各行各业,大幅提升了企业生产效率,国内很多公司成立了专门研究未来创新技术的部门,如:阿里巴巴的达摩院等。
国内大佬腾讯、华为也成立了人工智能研究部门,京东亦有专门的事业部研究无人车、无人仓及无人机,甚至较传统的“美的集团”亦设立了机器人公司。
热门话题:AI人工智能
无论在国内,还是全世界,AI人工智能早已是热门话题,其发展前景极佳,已成未来10年最具发展潜力的行业之一。
然而,由于人工智能的概念宽泛,涉及算法、识别、语言处理等技术,被社会大众公认为高科技,导致很多人不敢轻易涉足。
诚然,“男怕入错行,女怕嫁错郎",人们对工作的选择谨慎小心是正确的,不过如果您担心自己不能从事人工智能,那不妨留意下周边行业。
和人工智能有着异曲同工之妙的行业,还有数据分析,大家可以上网搜搜,会发现与之相关的职业平均月薪接近20k,且大数据人才需求总量,将在未来5年突破2000万人的巨大缺口而发展起来的。
数据分析行业前景如何?
人力资源和社会保障部发布《新职业—大数据工程技术人员就业景气现状分析报告》显示,2020中国大数据行业人才需求规模达210万,未来5年该需求仍将以30%-40%增速发展。
2013-2017年排名前五职位增长率
图片来源:领英中国2019年《新兴职业报告》
据悉,如今的互联网、金融、咨询、电信、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
正所谓行业越热证书含金量越高,技能越硬越易被认证。类似CFA、CPA、PMP、ACCA快速发展并得到行业高度认可一样,数据分析行业内高含金量的认证也有着同样的轨迹。
CDA数据分析师认证由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了公立性、共识性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。
从而,得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,成为大数据及人工智能领域长期、稳定、专业的行业人才标准。
CDA数据分析师认证
如何报考
了解报考条件及政策
长按扫码,立即咨询
考取对的证书,不仅能成你入行敲门砖,还可让你拥有具备核心竞争力的技能。相信对于CDA数据分析师认证证书,大家心里还是有很多问题。
接下来,我们继续深入扒一扒这个证书
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05