
如今,用APP打车是司空见惯的事情,不过你有没有发觉自己已成“大数据杀熟”的重点目标了!
复旦大学管理学院孙副教授和其团队进行了一项数据收集和分析研究,得出了一人令人震惊的结果。
研究团队遍布了国内5座不同的城市,分别进行了800多趟打车的操作,搜集到了滴滴、曹操、首汽、T3、 美团、高德和扬招等7个渠道的数据。
通过分析这些数据得出了一份“打车报告”,结果表明这些打车平台存在明显的“大数据杀熟”行为。
据更详细数据显示,苹果手机用户更容易被舒适的车辆,如:专车、优享等的司机接单,比例是非苹果手机用户的3倍。
不仅如此,苹果手机用户比非苹果手机用户享受到的打车优惠更少,苹果手机用户平均只能获2.07元优惠,而非苹果用户平均可获4.12元优惠。
你是苹果手机用户吗?你今天被“大数据杀熟”了吗?为了让大家能避开这个坑,我们先来了解下何为“大数据杀熟”。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危及品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。不想被大数据“套牢”,就要跟上大数据时代的步伐,注意培养自己的数据分析思维。
大数据分析是什么?
大数据分析,为提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
不过,大数据技术的出现是为更好地服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者也能多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14